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Abstract

Perception is the recognition of elements and events in the environ-
ment, usually through integration of sensory impressions. It is considered
here as a broad, high-level, object centered, phenomenon which happens
at and above the level of holistic recognition of objects and events, where
semantics begin to play a role. We propose and develop a mathemati-
cal theory of arti�cial perceptions 1. A basic mathematical category is
de�ned. Its objects are perceptions, consisting of world elements, conno-

tations, and a three-valued true, false, unde�ned predicative correspon-
dence between them. Morphisms describe paths between perceptions.
This structure serves as premises for a mathematical theory. The theory
provides rigorous tools of scrutiny that deal with fundamental issues of AI
such as the diversity and embodiment of arti�cial perceptions. It extends
and systematizes certain intuitive pre-theoretical conceptions about per-
ception, about improving and/or completing an agent's perceptual grasp,
about transition between various perceptions, etc. Mathematical tools
and methods are used to formalize reasonable ways to go about producing
a meaningful cognitive image of the environment from every perception.

1 Introduction

The science of Arti�cial Intelligence conceives and constructs autonomous in-
telligent arti�cial agents to bring about `intelligent' e�ects. Those e�ects are
typically related to the environment of the arti�cial agent. Intelligence is marked
by quick active perception and understanding. The essential core of autonomous
cognitive behavior is thus the integration of sensing, perceiving and representing.
High level perception is the recognition of elements and events in the environ-
ment, usually through integration of sensory impressions. It is considered here
as a broad, high-level, phenomenon, which resides higher than pixels on the
screen or waveforms of sound. It is object centered and therefore it happens
at and above the level of holistic recognition of objects, where semantics begin
to play a role. The raw materials of high-level perception are connotations of

1There is no intention to deal with human perceptual or cognitive processes. Any anthro-
pomorphisms or human analogs used in this study are for intuitive purposes only, to make
the presentation more vivid and readable.
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wholesome recognized environmental entities. At that point perception needs to
produce a logical, coherent and meaningful representation of the environment
and to use it for various cognitive tasks.

In [48] Newell states that perception is an area which should de�nitely be
covered by theories of cognition, since cognitive behavior is a function of the
environment. In [50], Nilsson proposes to work towards what he calls Habile
Systems : programs of general, humanlike, competence. The abilities of such
systems should `. . . include whatever is needed for an agent to get information
about the environment in which it operates . . . perceptual processing . . . facilities
for receiving, understading, and generating communications . . . ability to learn
. . . This direction was already suggested in [49] where Nilsson proposed to de-
velop life long Computer Individuals who should have a continuing existence.
They would have, among other things, a (constantly changing) model of the
world, they would bene�t from their experiences, and they would communicate
with other agents, arti�cial or human. These agents could do anything that
requires moving around in and sensing a real environment and manipulating
that environment in some way. By having a continuing existence and learning
from their own experience they would, in time, develop their own individual
image of their environment, which draws upon their own sensory-motor-neural
capabilities and their own experience. In planning such an agent, one cannot
separate the sensory-motor-neural apparatus from cognition, from higher level
reasoning, and from the communication capabilities: all these functions should
cooperate. The proposed mathematical theory of arti�cial perceptions and the
tools it o�ers may constitute a step towards achieving the challenge of general
basic arti�cial intelligence. The mathematical treatment provides a single con-
text for the treatment of various perceptual and cognitive processes, including,
among other things, transition and comparison between di�erent perceptions,
improving and completing a perceptual grasp, joint perceptions, and a bridge
that integrates perception and higher reasoning (i.e. problem solving, decision
making etc.). This warrants a uni�ed theory, where the separate processes en-
hance one another rather then interfere with one another.

Arti�cial agents may collect information about their environment using their
sensory-motor-neural apparatus. This information is then re
ected inside the
arti�cial agent in some way. The collecting of the information, together with its
internal re
ection, is conceived by this work as Arti�cial Perception. The raw
internal re
ection could then be arranged in any way to represent the agent's
own cognitive image of its environment, the arrangement serving as the basis
for further, higher level reasoning processes.

A mathematical structure is proposed which formalizes arti�cial perception.
This proposed formalization provides standard mathematical tools of scrutiny,
so that one can meticulously perform and analyze in the domain of arti�cial per-
ceptions. The proposed system is general enough to formalize a wide spectrum
of arti�cial perceptions. Any such perception usually has its own sensory-motor-
neural mechanisms and its own method of internally re
ecting the output which
emerges from this apparatus into the agent's internal modules. The generality is
achieved via a categorization which is able to accommodate any correspondence
between an external environment and an internal re
ection of it.

Many things seem to happen from the moment a phenomenon in the envi-
ronment comes to being, through its perception by the agent, and until it is
processed and eventually leaves its mark on the agent's cognition. The things

2



which happen at the early stages of this chain of events are typically prede-
termined by innate mechanisms and equipment. These are formalized by the
Perception Predicate. The agent is constructed to perceive world elements (w-
elements for short) and to re
ect them with connotations (The exact nature of
these concepts will be explained soon). The connotations of every w-element are
determined primarily by the built-in sensory-motor-neural apparatus. As an ex-
ample from humans, the way we perceive colors, tastes, sounds, smells, textures
and other outside phenomena is determined primarily by our neurophysiology,
plus our experience and socio-cultural in
uences. For arti�cial agents, program-
ming may stand for the latter ones in their broadest sense.

The later stages of the perceptual chain of processing feature, on the other
hand, more apparent 
exibility: the arti�cial agent now has the connotations
of its w-elements, and is free to manipulate things internally. There would
usually be room for a contingent course of action. That is where programmable,
perceptual-cognitive processes come in. These are the processes with which
this study is concerned. One asks questions such as: In this given perceptual
situation, can one detect lawlike orders and patterns of connotations? Are there
redundant connotations? What is the best way to arrange them for the bene�t
of future reasoning processes? Tools are proposed with which the agent may
give its own, informed, solutions to these problems. It can systematically obtain
a representation of the given situation. It creates its own cognitive image of its
environment. The entire process is based only on information provided by the
lower, embodied level.

There are debates as to how much of the intelligent, cognitive, processing
lies below and/or above the symbolic, conscious level (see, for example, [34]).
Our proposed formalization of perception is 
exible enough to accommodate any
location of the separation between lower- and higher-level processes. It presents
an abstract concept of perception, and thus permits the introduction of either
simple or more integrated connotations at the basic perception level.

All the de�nitions, constructions and results are operated within a math-
ematical system. This ensures a tidy treatment and thus communicates and
introduces to the related domains tools of mathematical rigor and results that
are meticulously stated. These tools could hopefully be used and further applied
for research in these related domains.

2 Pre-theoretical and Methodological Consider-

ations

This work presents and applies a mathematical system for the formalization of
arti�cial perception and related cognitive processes. Mathematical systems are
based on semantic primitives that are context independent. However, there is
more than often an intuitive grounding for mathematical semantic primitives.
This applies to this work where the formal system is grounded intuitively in a
perceptual, cognitive environment. We �rst discuss these intuitions and their
background.
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2.1 Diversity of Perceptions

We are dealing with an arti�cial agent that perceives its environment. Assume
that it is placed next to a box, and that it has the sensory-motor-neural capa-
bilities to determine the contents of the box. Someone asks the agent whether
the box is full. Some of the following problems may arise:

� The agent may or may not have been programmed, according to its pur-
poses, to consider a box full of air as full.

� It may or may not have been programmed to consider a half full box as
full.

� What if the box is full of waste-paper, which could be disposed of. Is such
a box considered full?

� The agent might have no `idea of fullness'. It may or may not have other
notions such as `�lled' or `empty', but does not recognize `full'.

� Finally, the agent may not perceive `a box', but rather six elements which
form the sides of the box.

Indeed, perception and cognition do depend on the sensory-motor-neural ap-
paratus of the agent, its history and experience, and on other capacities to
perceive, to form mental images, and to organize them internally. Di�erent
individuals could break the same reality into di�erent elements, and choose dif-
ferent uniformities as their properties. A partial list of AI-related works that
touch on this issue is [38, 35, 7, 30], to name just a few. Some extreme and
intriguing examples of cases of human perceptions are given in [45]. AI has to
deal with arti�cial agents that do not even share the same architecture. Their
hardware is di�erent, their sensory-motor-neural apparatus varies, and they are
conceived and programmed for di�erent purposes by di�erent people who build
their own conceptualizations into the system, each using his own encoding.

2.2 Categorization of Perceptions

Given the diversity of arti�cial perceptions, the question is how one can account
for such a diversity, yet at the same time formalize a theory of it. Our solution
is in the categorization of perceptions.

The philosophical idea of categorization was introduced in the 18th century
by Immanuel Kant, in his statement `Grounding for the Metaphysics of Morals '
[31]. It is central to cognitive science (see [38]). A simple example is the category
of cups. Cups can come in many shapes and forms, but they all have something
in common. The agent then creates out of this `cuphood' a mental image of a
cup, an abstract cup that does not match any particular cup from the category.
The agent also has general motor actions for dealing with real instances of
cups. It is generally agreed that humans are endowed with natural talents for
categorization, whereas the task seems hard for arti�cial perceptions. In that
case we should be able to categorize arti�cial perceptions : we should recognize
the essence of arti�cial perception, and we should create a formal image of it.
This formal, abstract, perception should not match any particular perception,
yet we shall have the tools for dealing with all perceptions. In Kant's words, this
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should be done . . . entirely a priori, since here we do not enjoy the advantage of
having its reality given in experience . . .

The abstract idea of a perception will be postulated as a mathematical con-
struct which relates between phenomena outside the arti�cial agent, a set of
world elements (w-elements for short), and re
ections which are internal to the
arti�cial agent, a set of connotations . World elements exist independently of
any thought or perception. Anything which exists independent of the arti�cial
agent, and could perhaps be discerned by it, is a legitimate w-element. Possible
example w-elements are a face, a light blow of wind, the shadow of a smile, a
slight shivering of voice, a tinge of smell or taste or color, etc. Not every sensory-
motor-neural mechanism is able to discern every such outside phenomenon, and
even if it does it may not attach the same connotations to them. Furthermore,
di�erent perceptions might break the same reality into di�erent parts to serve
as wholesome w-elements. Although the external environment has an objective
existence, its division into w-elements is subjective.

The term connotation was chosen (rather than `attribute' or `property') to
stress the a�nity to the agent's own individual, personal experience, and to
subtle distinctions. It is a meaning which is more than just a primary meaning.
As an example, on top of the conventional term of `mother' may or may not come
connotations such as `love', `comfort', and `warmth'. Further more, connotations
may be of a metonymic or metaphorical nature such as in `Necessity is the
mother of invention'. Connotations could also be, for example, iconic.

It is impossible to separate perception from the environment to which it
relates. The idea of a cognitive supraindividual that includes its environment
is elaborated in [29]. Every perception has its own set of w-elements, its own
set of connotations, and its own predicative correspondence between the sets.
They are given once the instance perception is �xed, in very much the same way
that the details of the cup are accessible once a perception relates to a speci�c
instance of a cup. The correspondence between w-elements and connotations is
given as a two-place partial predicate.

Mathematical category theory started with [17]. It provides tools of scrutiny
for stating results which can be used across a wide spectrum of mathematical
domains and objects [28, 43, 1, 13]. No speci�c knowledge of category theory is
assumed for reading this paper. The required categorical concepts will be intro-
duced whenever their actual applicability emerges from the context, providing
an ad hoc justi�cation for the formalism. It so happens that the categorical
toolkit often allows a precise description of complex phenomena that are too
complex to be grasped by a verbal description.

This work de�nes perceptions as a domain of mathematical discourse, where
di�erent perceptions represent di�erent members of the category. Structural
similarities among perceptions can be studied, yet leaving ample room for dif-
ferences and variety. Indeed, the more general the setting, the less likely it is
that the results will be profound. A combination of generality and depth is
attained by gradually concentrating on more restricted subcategories of percep-
tions, thus identifying this part which is deep and proper to `better' perceptions
and separating it from that part which is trivial. More speci�c results can be
shown if discussion is restricted to a subset of `better' perceptions. Loosely,
these perceptions can be quali�ed as those where the set of connotations is
closed under Boolean operations.

5



2.3 Boolean Algebra as a Cognitive Tool

Boolean algebra was �rst introduced by George Boole in his 1854 statement
[12] An Investigation of the Laws of Thought . During the century that followed
this �rst publication, the theory of Boolean algebras was developed both as a
special kind of algebraic ring and as a generalization of the set-theoretical notion
of a �eld of sets. Major contributions are due to Jevons, Peirce, Schroeder,
Whitehead, Huntington, Tarski, and Stone (to name just a few).

There are debates as to the suitability of Boolean operations to model hu-
man cognition, especially at the lower, sensory-motor-neural level. The idea
that Boolean algebra could be applied to express acts of conscious thinking is
due to George Boole himself ([8, pages 433{447]). This work is, however, not
committed to imitating human perceptual cognitive behavior. The categorical
transition from basic arti�cial perceptions to Boolean arti�cial perceptions is
conceived by this study to formalize a bridge between a lower, arti�cial sensory-
motor-neural level (that could be based, for example, on a neural network),
and higher arti�cial reasoning levels. As mentioned in the introduction section,
the mathematical model is 
exible enough to accommodate any location of a
boundary between an innate sub-symbolic lower level, and higher level cognitive
processes. Either very basic or more integrated connotations can be introduced
at the level where perceptions �nally label sensory-motor-neural outputs with
symbols, and semantics begin to play a role.

The cognitive processes that are described in this work result in embodied
cognitive structures that are cast as Boolean algebras. They are structures that
are, among other things, interpretable as logical formulas. The dominant view
in AI is that the knowledge content of high level reasoning programs ought to
be represented by data structures with this property [24].

2.4 Partiality of Perception, Three Values of Truth, Non-

Monotonicity

One of the assumptions that will be expressed by the formalization is that per-
ception is not total. Recall the perception of the closed box from the beginning
of section 2. Assume now that it does discern it as a single w-element: `box',
that it has the connotation `full', and that the predicative correspondence of
`full' to w-elements in the world is adapted to the reader's choice.

� The agent may be unable to perceive whether the w-element `box' is `full'
due to sensory-motor-neural de�ciencies.

� In other cases the agent might have the required sensory-motor-neural
capabilities, but it does not bother to use them because the question is
irrelevant to its current purposes.

� In yet another case the agent might have knowledge of the contents of the
box, but for current purposes it is more practical not to distinguish full
boxes from others.

� There can also be a case where the box is only half full, and it is bet-
ter to leave the question unanswered until, eventually, practical or other
considerations will determine the box status as full or not.
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In all these cases, and there may be others, it is desirable to leave perception
unde�ned. For such reasons the p-predicate is partial: in some cases it gives
no de�nite answer. Whether the `box' is `full' may be true(t), false(f), or
unde�ned(u).

The proposed, non-classical, solution is to have a third truth value, unde�ned
(u for short), and to de�ne the predicate as total. The predicate then assumes
the third truth value, u, whenever perception is unde�ned. This does not mean
that we admit more than two genuine truth values. It rather captures the idea
of a truth value gap, and provides us with a convenient designation for the
unde�ned cases.

In the mathematical background there are a few three valued logics [26, 27,
57], each of them with its intuitive interpretation. Two of them are relevant to
us. Kleene's [36] intuitive interpretation is that the third truth value represents
ignorance: there exists a truth value, only it is not exposed for some reason.
This corresponds to the cases above where there is ignorance or irrelevance of
the fullness of the box. It could also capture indi�erence or inattentiveness.
Lukasiewicz's [42, 41] intuitive interpretation is that the third truth value rep-
resents indeterminacy or future contingence. This corresponds to the case of the
half full box where there is no decision yet, with the assumption that it might
eventually be decided.

Intuitively, then, these are two di�erent interpretations. Technically, though,
the resulting logics are very similar. Both follow the principle that where one can
determine the truth value, t or f, of a compound well formed formula from its
components, that w� should be assigned that truth value, regardless of whether
or not certain of its components are undecided. So, for example, A _ B will be
assigned the value t if one of A or B is assigned the value t, even if the value
u is assigned to the other. The only formal di�erence between Lukasiewicz's
and Kleene's connectives relates to the conditional and biconditional: Under
Lukasiewicz's interpretation the conditional A ! B is assigned t when A and
B are indeterminate. Consequently, his system, unlike Kleene's, preserves the
law of identity: it is always t that A$ A.

From the interpretational point of view, we want our third truth value to
capture both the ignorance/irrelevance case and the future contingence case. For
other reasons we wanted to preserve the law of identity. Hence Lukasiewicz's
three valued logic is adopted here. Our interpretation is of a rather pragmatic
nature: the unde�ned truth value might eventually become de�ned, t or f, but
right now it is not. By the individuality of perceptions this is not a matter of a
universal fact, so that the question whether or not it has already been decided in
some transcendental way becomes meaningless and irrelevant to our purposes.
Any instance of perception may give no answer on whether the `box' is `full'.
This is done for reasons `private' to the agent, with no need to give any account
whatsoever about them. This is very much in the same way that there is no
need to explain why a box is either `full' or not. The issue of why perception is
as it is simply warrants no discussion.

Lukasiewicz's three valued logic has an aspect of non-monotonicity. Let us
reconsider perception of the box. Suppose that it con�rms about a set of boxes
the following facts:

� Any box that is perceived full is also perceived red .

� Any box that is perceived not red is also perceived not full .
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(By `not full' and `not red' boxes it is meant that the p-predicate actually yields
the truth value false in answer to the relevant question, and not that the answer
is unde�ned.) Suppose, in addition, that there is one box (or more) for which
both redness and fullness are not de�ned by perception (the box is covered by
a blanket). This is exactly a case where Lukasiewicz's logic will di�er from
Kleene's. In Kleene's logic, such a box will prevent perception from concluding
that a full box is always red . However, by Lukasiewicz's logic which we have
just adopted, perception will non the less come to that conclusion: a full box is
always red . Indeed, some time in the future the blanket might be removed, so
that perception will improve to the point where it de�nitely observes that this
box is full but green. The conclusion will have to be retracted.

Reasoning is called non-monotonic when the reasoning agent must withdraw
a previously deduced conclusion in response to learning some new fact. Non-
monotonicity is often encountered in AI, and many e�orts and achievements
were recorded in this area of research ([52, 46, 47, 53] to name just a few).
The intelligent agent `jumps to conclusions' in spite of incomplete information.
The incompleteness of the information is represented, in our case, by the third
truth value, u. The agent might eventually use these perceptual conclusions for
practical purposes (such as the advice to dump all boxes that are not red). This
constitutes a risk. It is not impossible to imagine a natural situation where
humans jump to such conclusions and take such risks. A typical reason for
doing this is that the agent needs to come to as many plausible conclusions as
possible in order to achieve something. Without taking the risk it might stay
with nothing much to do. Insisting on absolute security with no risks may often
be paralyzing: i.e. it might be impractical either to keep all boxes or to check
all of them.

2.5 Summary of Section 2

The formalization of arti�cial perceptions in a mathematical system will be
based on the following pre-theoretical intuitions:

� Perceptions di�ers from one arti�cial agent to another. There does not
exist any perception which is `objectively' correct. All perceptions are
legitimate.

� The necessary component of perceptions is the correspondence between a
set of outside w-elements and a set of internal re
ections (connotations).
These sets and the correspondence between them are determined indepen-
dently for every instance of arti�cial perception.

� In `better' perceptions the set of connotations is closed under Boolean
connectives.

� Arti�cial perception is partial. It may not provide a de�nite answer
to every question about its perception. The reasons for this may vary,
but all the cases where perception is unde�ned are treated uniformly by
Lukasiewicz's three-valued logic. It is assumed that eventually the unde-
�ned cases of perception might turn out to be de�ned either as true or as
false.

8



� Due to the partiality of perceptions and its treatment by the three-valued
logic, the agent may `jump to conclusions' that may eventually turn out
to be incorrect. Such risks are taken for the sake of coming to as many
plausible conclusions as possible in order to achieve something.

In commitment to the mathematical formalization, results will be inferred and
concluded only from the formal premises using mathematical tools and methods.
However, whenever a result is reached, it will be possible to examine it with
regard to these pre-theoretical considerations, and to test it against existing
theories and opinions about arti�cial perceptions and cognition.

3 Background and Related Research

This study does not directly carry forward an existing body of work. It tries
to propose a new mathematical framework, where no such framework already
exists, for a theory of arti�cial perceptions. It is, however, akin to several
research paths. Methods and results from category theory, Boolean algebra and
Lukasiewicz's three valued logic will be applied, as explained above. These are
the mathematical beaten tracks that we tread.

In AI this work falls in with other applications of mathematical methods
for purposes of this domain ([9, 16]). The advantages of mathematical formal-
izations as analyzed, for example, in the introduction to [15] include clarity,
precision, versatility, generalizability, testability, allowance to model complex
phenomena that are far too complex to be grasped by a verbal description, and
allowance to use results of a well developed science.

Within mathematics, category theory seems suitable for purposes of AI.
AI tries, in a sense, to approximate intelligence by creating particular models
of arti�cial intelligence as well as foundations for a general account of such
intelligence. In that context the following quotation from Lawvere [39] seems
relevant: `Even within mathematical experience, only that [category] theory
has approximated a particular model of the general, su�cient as a foundation
for a general account of all particulars'. Lawvere further argues that category
theory provides a guide to the complex, but very non-arbitrary constructions of
the concepts and their interactions which grow out of the study of any serious
object of study. There has not been, however, much AI related research utilizing
mathematical category theory. A few examples are given in [10]. They include
employing categorical terminology and tools for problem solving strategies [4],
for program reformulation [40], and for representation engineering [59]. Except
for the very use of the categorical infrastructure, these applications are di�erent
from the category of perceptions presented here. A recent revival of interest
in category theory for computer science is demonstrated by the publication of
several books such as [51, 6, 58, 3]. Their emphasis is typically on categorical
logic and semantics.

Another long research path that this work touches is the study of cognition.
Cognitive studies have other motivations and goals, because they are typically
interested in human cognition and in being empirically adequate from a psy-
chological point of view. However, their track often coincides with that of AI.
Concepts and processes of human intelligence have inherently been a source of
inspiration for research in AI and the present one is no exception. (However,
this work is not committed to being empirically adequate from a psychological

9



point of view.) One formalism for perception and cognition that shares some
common aspects with the descriptive features of the formalization in this study
is the `Conceptual Spaces' framework by G�ardenfors [21, 22, 23]. It is applied
by the cognitive architecture that is described in [14]. Conceptual spaces do not
go, however, into the formalization of the variety of complex cognitive construc-
tions and processes that is enabled here by the usage of the categorical toolkit.
Marrying mathematical category theory with cognitive studies is also proposed
in [44]. As for the use of Boolean algebra in the cognitive sciences, an example
is [33] which formalizes semantics for natural language using Boolean algebra.

The issue of alternative viewpoints is shared with research in the area of
ontology design. Di�erent ontologies represent di�erent perceptions. [20] agrees
that achieving interoperability and sharing of independently created ontologies
is a challenging task. Dealing with alternative viewpoints is also shared with
research in user modeling [32]: Systems that try to model their individual users
also need to deal with the particular perception of each user (or users' class).
Some of our examples (e.g. example 5) will be related to that.

As we proceed with the de�nitions, constructions, and results of this study,
associations of speci�c aspects with other research will be mentioned in the
context of their presentation.

4 The Formal Concept of Arti�cial Perception

We postulate the abstract idea of a perception as a mathematical construct
which relates between phenomena outside the arti�cial agent, a set of world
elements , and re
ections which are internal to the arti�cial agent, a set of
connotations . Every perception has its own set of w-elements, its own set of
connotations, and its own predicative correspondence between the sets.

De�nition 1 A Perception Machine ( Perception for short) is a three-
tuple hE ; I; %i where:

� E and I are �nite, disjoint sets.

� % is a 3-valued predicate % : E � I ! ft; f; ug

The set E represents the outside, objective, world which the machine perceives.
Anything which exists independent of the arti�cial agent, and could perhaps be
discerned by it, could be a legitimate element of E and hence an w-element.
Example w-elements may be a sound, a light, a blow of wind, a vapor (smelly
or not), a candy bar, etc. These example w-elements are typically discerned
by the human sensory-motor-neural apparatus, but some arti�cial perceptions
may be unable to discern them. They may, however, discern w-elements that
are imperceptible for humans, such as certain kinds of radiation. Furthermore,
di�erent perceptions might break the same reality into di�erent wholesome w-
elements. An example was given in the introduction: wherever one perceives a
single wholesome w-element `box', another may perceive an arrangement of six
w-elements `board'. For humans, a human face would usually be a single, whole-
some w-element that is easily perceived. Whether this is also the case where
machine perception is involved, is, however, not so clear. Hence, although we
assume the external environment to have an objective existence, its division into
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w-elements depends on the speci�c perception. (This phenomenon, as related
to humans, has been studied by gestalt psychology [18]).

The set I stands for the internal representation, the ontology, of w-elements.
Its elements have a subjective existence dependent on the machine. Anything
which may be stored and manipulated in the machine (words, symbols, icons,
etc.) could be a legitimate element of I and hence a connotation. Example
connotations may stand for the pitch and/or duration and/or timbre and/or
volume of a sound, the brightness and/or hue and/or saturation of a light, etc.
These example connotations typically represent attributes or properties that
are measurable by humans, and hence considered `objective'. However, `hot'
and/or `dark' and/or `good' and/or `?!?!?' are legitimate connotations as well
(the last one is not a typo). These are de�nitely not `objective', they depend
on the speci�c perception.

The three-valued predicate % is the Perception Predicate (p-predicate for
short) which relates w-elements and connotations, the connection between the
environment and internal representations. The terminology for the various %
values will be the following:

� %(w; �) = t, it will be said that w has connotation �.

� %(w; �) = f, it will be said that w lacks connotation �.

� %(w; �) = u, it will be said that w may either have or lack this connota-
tion, the `or' is evidently exclusive. This unde�ned value might eventually
become de�ned but right now it is not.

The perception, and the values of % in particular, is part of the de�nition of an
agent, given data. This is supposed to capture the intuition that subsymbolic,
early perceptual processing is innate to the agent and its architecture. The
emergence of higher level perception from the sensory-motor-neural apparatus
depends on this apparatus itself, the agent`s function and internal organization,
its gestalt perception, mental imagery, etc. Connotations that are alphabetic
strings do not necessarily follow their dictionary de�nitions (if they have any).
A smelly invisible vapor may, for instance, have the connotation `pink'. This
may depend on the agent's own individual architecture, programming and ex-
perience. Likewise, the issue of why the p-predicate has any one of the three
values at a certain point simply warrants no discussion. As an example, the
unde�ned u value of the p-predicate may be due to ignorance, irrelevance, fu-
ture contingence or other reasons. From the philosophical point of view, these
possible reasons are quite di�erent one from the other. In our context, however,
the actual reason for a speci�c u value, or whether or not it is already `decided'
in some transcendental way, is irrelevant.

4.1 Example Perceptions

Our example environment will be a bookstore environment, where books are
the w-elements. Agents who `enter' the store have di�erent perceptions of this
environment, varying with their topics of interest, budget restrictions, goals and
reasons for `entering' the store, etc.

Example 1 Let P = hE ; I; %i be a `catalog' perception where:
I = f science, �ction, art, travel, children, cookbooks, . . .
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title1, title2, . . . authorname1, authourname2, . . . publisher1, publiser2, . . .
paperback, hardcover, colorplates, leatherbound, topten, reduced, . . . ISBN1,
ISBN2, . . . pages1, pages2, . . . price1, price2, . . . edition1, edition2, . . . g
For all books w in E and for all connotations � 2 I, %(w; �) = t if and only if w
has that connotation by P. It is f if and only if w does not have that connotation
by P. It is u if P does not o�er any perception of that connotation. In this
example (and in other typical cases as well) the connotations can be subdivided
into `families' (such as topic connotations, title connotations, etc.) and the
number of di�erent connotations can be very large 2. However, they all share
the same status as elements of I. [21, 22, 23] o�ers to make a distinction among
di�erent `quality dimensions' that make the `conceptual space'. A distinction in
this spirit will follow naturally from our later Boolean constructions in section
9.1.

Example 2 Let P = hE ; I; %i be a `customer' perception where:
I = ftopic-of-interest, favorite-author, not-interesting, got-it-already, buy-it,
good-price, thick, heard-of-it, makes-a-nice-present, in-bad-shape, hmm, . . . g
For all books w in E %(w; favorite-author) = t if and only if w is written by a
favorite author of that perception, etc. The values of % are decided individually
for every customer perception. In a typical case many p-predicate values are u,
since most books are closed and lying on the shelves.

We terminate with two perceptions of a more abstract nature.

De�nition 2 Let E be an environment. The Universal Perception of E is
UE = hE ; 2E ; �i where:

� The set of connotations, 2E , is the �eld of all subsets of E.

� For all w 2 E and for all A � E, �(w; A) = t if and only if w 2 A,
otherwise �(w; A) = f.

The Universal Perception of E thus has a totally two valued p-predicate. For
any subset of books in the bookstore example, for instance, it has a unique
connotation that describes it accurately.

De�nition 3 Let E be an environment. In the Empty Perception of E the
set of connotations is empty. The p-predicate is, of course, degenerate. P; =
hE ; ;; %;i.

An empty perception cannot relate to its environment E .

4.2 Perception Morphisms

Given the variety and individuality of perceptions as above, one needs a way to
bridge, if possible, the di�erences between di�erent perceptions. Perception is
also known to be a dynamic, or `
uid' phenomenon. It changes all the time and
one needs channels for the 
ow of change. Perception Morphisms (p-morphisms
for short) are going to serve as a formal tool for this purpose. Suppose that P1 =
hE1; I1; %1i and P2 = hE2; I2; %2i are two perceptions. We are going to consider
cases where the environment is the same for both perceptions: E1 = E2, and

2At any point there is, however, only a �nite number of active connotations
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hence designated simply E . Since E is �xed, we shall omit the �rst component
from the de�nition of perceptions: P = hI ; %i is a short designation for P =
hE ; I; %i. (The cases of paths between perceptions with di�erent environments
are going to be treated in a separate study).

A p-morphism from P1 to P2 will be de�ned as a set mapping of the conno-
tations. However, this `translation' between connotations should `make sense':
The essence of connotations as meaningful representations of the outside world
should be maintained. One thus needs to de�ne some `structure preservation'
condition on the mapping. The formal de�nition follows:

De�nition 4 Let E be an environment. Consider two perceptions, P1 = hI1; %1i
and P2 = hI2; %2i. h : P1 ! P2 is a Perception Morphism (p-morphism for
short) if the two following conditions hold:

1. h is a set mapping of the connotations h : I1 ! I2.

2. h is No-Blur: for all w 2 E , and for all the domain connotations � 2 I1,
whenever %1(w; �) 6= u then %2(w; h(�)) = %1(w; �)

The de�nite (t/f) values of the p-predicate are preserved by p-morphisms.

4.3 Examples of Perception Morphisms

The following examples illustrate the 
exibility of p-morphisms, (often called
`arrows') and their ability to bridge between di�erent perceptions (whenever
such a bridge is possible). We return to the `bookstore' example environment
of books, to the `catalog' perception of example 1 and the various `customer'
perceptions of example 2.

Example 3 Consider two `bookstore' perceptions:
P1 = hI1; %1i and P2 = hI2; %2i where Ii = f interesting , not-interesting g,
with `opposite' tastes - for all books w in E:
%1(w; interesting) = %2(w; not-interesting)
%1(w; not-interesting) = %2(w; interesting).
h is de�ned by:

(interesting
h
7!not-interesting), (not-interesting

h
7!interesting).

� It is easy to see that h is no-blur and hence a p-morphism by de�nition 4.
As a matter of fact, it is a rigid case of a p-morphism: no-blur requires
the equality %2(w; h(�)) = %1(w; �) to hold only in the de�nite cases where
%1(w; �) 6= u.

� h is one-to-one and onto. Moreover, h�1 is also no-blur, so that h has
an inverse p-morphism and hence the perceptions P1 and P2 are isomor-

phic.

Example 4 Consider two `catalog' perceptions of E, P1 = hI1; %1i and P2 =
hI2; %2i, and a p-morphism h : P1 ! P2.

� h may generalize perception in that several domain topics map to a single

codomain topic in a many-to-one manner, e.g. (math, physics
h
7!science).
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� In some cases h could feature a simple translation, for instance if the
domain prices are in US dollars, while the codomain's prices are in ECU:

(price-i(USdollars)
h
7!price-i(ECU)),

� The domain perception may not specify certain connotations, such as ei-
ther topten or leatherbound, so that these connotations in the codomain
do not have sources under h, and hence h features an `expansion'.

� In some cases the mapping may be simple, e.g. (topten
h
7!topten), however

topten may be unde�ned for the domain perception %1(w; topten) = u but
%2(w; topten) = t is de�ned, so that there is some `unblurring'

Example 5 Let P1 = hI1; %1i be a `catalog' perception as in example 1, and let
P2 = hI2; %2i be a `customer' perception as in example 2. Let h : P2 ! P1 be
a p-morphism based on the mapping:

(art, travel
h
7!topic-of-interest),

(all other topics . . .
h
7!not-interesting),

(prices less than 25 . . .
h
7!good-price),

(titleN
h
7!heard-of-it),

(pages more than 400 . . .
h
7!thick),

(titleM
h
7!got-it-already),

(topten, reduced
h
7!hmm),

(leatherbound, colorplates
h
7!makes-a-nice-present).

for all other connotations: (�
h
7!blabla-�).

� The essence of no-blur: Books that are art and books that are travel for
the catalog perception are topic-of-interest for P2. Books that do not cost
less than 25 are not good-price for P2, etc. However, it may be that, for
some book w, %1(w; title7) = u, but %2(w; got-it-already) = t.

� Many connotations of P1, such as ISBN, publisher etc., map to the respec-
tive blabla for P2. The intuition of the blabla connotations is that they
have no signi�cance for P2, although they are perceived by it. (Technically,
h has to be de�ned on all the source connotations).

� h is not onto: Some P2 connotations (such as buy-it) do not have an h
source connotation in P1. Loosely, they are not captured by P1 and h. A
few possible explanations:

{ The connotation buy-it is a function of a combination of catalog con-
notations, and we do not have a way to express it, yet.

{ The customer's favorite authors are simply not in the authorlist of
the catalog perception.

{ The catalog perception is unable to perceive that a book is in-bad-
shape, while the customer's perception is able to perceive this.

If the catalog perception serves the store owner, and he also has knowledge of
the p-morphism h, then h may be considered as a `customer model' that may
be used to better serve the customer. In a context where individual customers
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are abstracted as individual perceptions, an arrow such as h would constitute
the core of a `model' of the customer. Customer modeling can be viewed as a
special case of user modeling, also mentioned at the end of section 3.

Example 6 Let P1 = hI ; %1i be a bookstore perception, and let P2 = hI ; %2i
be a perception with the same set of connotations. Let h : P1 ! P2 be a
p-morphism based on the identity mapping. By the no-blur property of the p-
morphism h, P2 is, in the general case, an improvement of P1: there may
be books with imperceptible connotations for the domain perception, yet these
connotations are de�nitely perceived by the target, improved, perception. In this
case h formalizes improvement of perception. (e.g. the books are now open so
that more things can be perceived about them). The term Improvement will
designate either the improving p-morphism h, the target perception P2, or the
target p-predicate %2. Since h is the identity on connotations these concepts
uniquely imply one another. Note that h is one-to-one and onto, yet it is not
necessarily an isomorphism: if there is some `unblurring' of perception, then h
does not have an inverse p-morphism.

Example 7 Let P be yet another perception that perceives books using conno-
tations that stand for the size of the book (x�y�z centimeters), its font and the
quality of the paper. It is probably impossible to construct a p-morphism from
or into any of the example perceptions above.

We terminate with two special arrows:

Example 8 Let UE = hE ; 2E ; �i be the universal perception of E, as in de�nition
2, then for every perception P = hI ; %i, there exists a morphism h : P ! UE as
follows:

� De�ne bP = hI ;b%i to be a totally two-valued perception where b%(w; �) =
%(w; �) if and only if %(w; �) 6= u. This can be achieved from P by an ar-
bitrary choice of a de�nite truth value whenever %(w; �) = u. The identity

mapping on I de�nes a p-morphism bh : P ! bP: it is no-blur by de�nition
of b%. As a matter of fact, it is a special case of an improvement morphism
(as in example 6): it is a total improvement.

� There exists a natural p-morphism � : bP ! UE , which is de�ned by:
�(�) = fw 2 Ekb%(w;�) = tg. It is easy to see that � de�nes a rigid, and
hence no-blur p-morphism.

� It is also easy to see that the composite mapping h = bh � � de�nes a
p-morphism from P to UE . (As a matter of fact, a composition of p-
morphisms is always a p-morphism).

� bh, and hence also h, is not unique. Its de�nition introduces two possibili-
ties for every u value of P: t or f.

Example 9 Let P; = hE ; ;; %;i be the empty perception of E(as in de�nition
3). For every perception P of E , there exists a (unique) morphism h : P; ! P.
It is based on the empty mapping of connotations, and it emptily stands the
no-blur condition for p-morphisms.
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4.4 Categorical Formalization of Perception Machines

Having de�ned perceptions and perception morphisms, we would like to de�ne
the Category of Perceptions as a basis for a mathematical theory of arti�cial
perceptions. (In the same manner the infrastructure for group theory is provided
by de�ning groups, group homomorphisms, and the category of groups.)

All perception machines hE ; I ; %i with the same �rst component E will be
regarded as a collection, soon to be formalized as a mathematical category.

De�nition 5 PrcE , Perceptions of E , is the collection of all objects of the
form hE ; I; %i, called Perceptions, where E, I, % are as in de�nition 1. Since
E already appears in the designation PrcE , we use hI ; %i instead of hE ; I; %i.

There are various possible sets E of w-elements, so we are actually de�ning a
family of collections. De�nition 5 does not discard E , the environment. It rather
raises it one level higher in the hierarchy. Inside PrcE all perceptions refer to
the same environment (such as the bookstore environment), so that it becomes
redundant in the speci�cation of single perceptions.

De�ning PrcE as a mathematical category provides infrastructure from a
well developed science: category theory. The de�nition of a category requires
that:

� One is given a set of objects .

� Given any pair of objects P;Q, one has a collection of morphisms f : P !
Q from P to Q. Given a morphism such as f , P is the domain of f , and
Q is the codomain of f .

� Morphisms should be closed under composition: Given two morphisms
f : P ! Q and g : Q ! R, where the codomain of f is the same as the
domain of g, one may form their composite, f � g, which is a morphism:
f � g : P ! R, such that f � g(a) = g(f(a)) (i.e. apply f , then g).

� Composition should be associative: f � g � h = (f � g) � h = f � (g � h) .

� For every object P there should be an identity morphism IdP : P ! P .

� The identity morphism should be the (left and right) unit element of
composition: For every f : P ! Q , IdP � f = f = f � IdQ.

In our context the objects are perceptions P ;Q : : : and morphisms are p-morphisms.
The remaining requirements can be easily settled, since composition of p-morphisms
is de�ned by set composition of the mappings, and the identity p-morphism is
de�ned by the identity mapping.

Lemma 1 PrcE , together with de�nition 4 of morphisms (composition of mor-
phisms and the identity morphism are de�ned at the level of set mappings) is a
category.

The construction and formalization of all perceptual cognitive processes will be
trimmed in terms of these very few primitives that category theory provides for
the study of arti�cial perceptions: perception, p-morphism, domain perception
and codomain perception of a p-morphism, and composition of p-morphisms.
This predicts theoretical as well as applicational tidiness.
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A discussion of the basic mathematical properties of the category of percep-
tions, as well as more example applications, is provided by [2]. Already at this
point example applications of basic categorical notions can be provided:

Example 10 Consider examples 4 and 5. If there is a p-morphism h : P1 !
P2 translating between two `catalog' perceptions, and there is a p-morphism
g : P2 ! P3 that models a `customer's perception P3 in terms of the catalog
perception P2, then a composite p-morphism h � g would neatly model the cus-
tomer's perception P3 in terms of the catalog perception P1. This opens the
way, for instance, to a formalization of cooperation between two systems where
each one models its own customers.

A perception should be able, among other things, to preserve its autonomy
within a society of other perceptions. The variety can occur between several
distinct agents, or within one single agent. Some standard categorical tools are
capable of formalizing forms of joint perceptions, with varying degrees of trust
and partnership. They are elaborated in [2].

Example 11 Maximal trust using coproducts - A coproduct of a family of per-
ceptions is their `least expanded common expansion': an expansion of perception
to include the perceptions of the other participants as well. Injecting morphisms
are the formal tool that puts them together. This kind of joint perceptions could
be useful in any one of the many cases where there is more than one possible
perception of a given environment. It provides a neat formal way to go about
joining them.

Partnership in coproduct perceptions may be enhanced by merging conno-
tations that are shared by di�erent perceptions (common sense connotations).
This can be formally done by a proper pushout.

Minimal trust using products - A product of a family of perceptions is their
`least blurred common blur'. Example cases where such product perceptions may
be useful are cases where points of disagreement have to be blurred. Project-
ing morphisms are the formal tool that �lters out separate aspects of the joint
perceptions.

Pullbacks are capable of formally restricting the product perceptions to the
desired subset of connotations that feature de�nite or possible future agreement.
This formalizes minimal trust partnerships that concentrate on similarities be-
tween the participants.

4.5 Summary of Section 4

The domain of discourse of Perception Machines was formally de�ned and cat-
egorized. This provides a well known mathematical environment within which
one can scrutinize arti�cial perceptions. In the sequel this formalization will be
justi�ed by showing that tools provided by category theory are useful and mean-
ingful to the study of arti�cial perceptions and related cognitive processes. The
scrutiny will pay by leading us to more insights and to practical constructions
and results: It is a means rather than an end by itself.
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5 A Natural Structure of Perceptions

By merely looking at the examples it can already be observed that a connotation
is more than just an arbitrary entity which stands all by itself. No matter how a
connotation is internally represented, once it is tied with the environment E via
the perception %, there are certain lawlike orders and patterns which can be ob-
served about it: one connotation may suggest another, some connotations come
always together while others never do, and there are other possible connections
as well. All these interlacing connections suggest that I has an inner structure,
induced by E and %. This is suggestive of more structure in the objects of the
category PrcE : perception of the environment seems to introduce a structural
element into the internal representation.

5.1 Synonyms

Two connotations may be indistinguishable in that they stand for the same
perception values. If they could be merged, it could mean a useful extraction of
the perceptual essence out of the set of connotations, with no duplications and
redundancies. This formalizes a cognitive process of generalization: forming a
general term from particulars.

De�nition 6 Let P = hI; %i be a perception, and let �; � 2 I. � and � are
Synonyms (or %-synonyms), denoted �'�, if for all w in E %(w; �) = %(w; �).
3

It is obvious that:

Proposition 1 ' is an equivalence relation.

The quotient set I=', whose elements are the distinct synonymity equivalence
classes, will be designated I�. The predicate % is of course well de�ned on E�I�

as well, and the resulting perception will be designated P� = hI�; %i.
A change in the set of connotations, from I to I�, captures a cognitive

process: the internalization of synonymity between connotations. It is neatly
and easily formalized by one of our categorical primitives: a p-morphism. Let
P = hI ; %i and P� = hI�; %i. De�ne the mapping into the quotient set: MP :
I ! I� : � 7! [�], where [�] designates the class of all synonyms of �. Obvi-
ously:

Proposition 2 MP : P ! P� is a rigid p-morphism. (rigid was explained in
example 3).

For readers interested in the mathematical-categorical context, a p-morphism is
a coequalizer if and only if it merges synonyms only [2].

Example 12 In example 2 the following could be synonyms:
(big-red-sticker 'good-price)

3In its original understanding synonymity is a relation that holds between linguistic labels,
and not between connotations. Our reading of this term, as well as other terms such as
`connotation' is, indeed, inspired by their original readings. However, there is no obligation
to their exact traditional understanding.
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5.2 Subsumptions

The idea behind synonyms is now relaxed. Instead of two connotations repre-
senting exactly the same w-elements, one appears to represent a subset of the
w-elements represented by the other. The family of w-elements with connota-
tion � has, as `sub family' the w-elements with connotation �. Taken the other
way round, w-elements with connotation � seem to always have connotation �
as well. This means that connotation � seems to subsume or imply connotation
�.

De�nition 7 Let P = hI ; %i be a perception, and let �; � 2 I. � subsumes

�, denoted ���, if for all w in E, %(w; �) = t ) %(w; �) = t and %(w; �) =
f) %(w; �) = f

The condition of de�nition 7 is designated 8w 2 E %(w; �)
Luk
�! %(w; �). In the

absence of u values,
Luk
�! becomes the classical two valued material implication.

Proposition 3 The � relation is a quasi order in I.

The passage from the set of connotations I to the set of equivalence classes
of synonyms I� was shown to be a rigid p-morphism of hI; %i onto hI�; %i.
Namely, it rigidly preserves the p-predicate %. Hence subsumptions between
elements of I� can be de�ned in exactly the same way as subsumptions between
connotations of I. Moreover:

Proposition 4 The subsumption relation � is a partial ordering on I�.

Example 13 In the Universal Perception of E (see de�nition 2), let A;B 2 2E

be subsets of E. Then A�B if and only if A � B.

Example 14 In example 1 the following subsumptions may be observed (de-
pending on the speci�c perception):
(Asimov �science-�ction) (art �colorplates)

The de�nition of
Luk
�! , ', � are inspired by the de�nition that Lukasiewicz

gave to the biconditional and to the conditional (respectively) in his 3-valued
logic. The choice of this logic was discussed in section 2. By preserving the law
of identity as in Lukasiewicz's logic, any connotation both subsumes itself and
is synonym to itself. Without having u $ u, connotations that are unde�ned
for some w-elements (i.e. %(w; �) = u) could not have been their own synonyms.

Synonyms and subsumptions need not be universal. In example 12, for
instance, it is indeed not a universal truth that reduced price books are marked
with big red stickers. The practical possibility to treat worlds with special
features and patterns is another aspect of the subjectivity and 
exibility of
perceptions. Arti�cial perceptions `browse' in their environments and detect
synonyms and subsumptions.

5.3 Non-Monotonicity of the Relations

If synonyms and subsumptions are to be regarded as structure in the category
of perceptions, then this structure might naturally be expected to be preserved
by p-morphisms. However, it can be easily seen that this is generally not the

19



case: Let �'� in a given perception P = hI ; %i. Let w 2 E be such that
%(w; �) = %(w; �) = u. Let h : P ! Q be a p-morphism, where Q = hJ ; � i.
By de�nition 4 of p-morphisms it may be that �(w; h(�)) 6= � (w; h(�)). In
that case h(�)6'h(�). Similarly, if ���, it may be that � (w; h(�)) = t but
� (w; h(�)) 6= t. In that case h(�)6�h(�).

Hence, when a p-morphism is applied, either one of the relations ' and �
may not be fully preserved. This phenomenon will be henceforth called the
Non-Monotonicity of these relations. It was also discussed in the context of our
pre-theoretical considerations (subsection 2.4).

The example cases used above are such that for some w 2 E it so happens
that %(w; �) = %(w; �) = u. It can be easily veri�ed from the de�nitions of '
and � that these are the only ones that represent possible non-monotonicity
under a p-morphism.

The issue of monotonicity of improvements (see example 6) and total im-
provements (see example 8) of perceptions is central to this study. The `open-
minded' consideration of all possible improvements and total improvements gen-
erally means non-monotonicity. On the other hand, restricting the discussion
only to monotone improvements and monotone total improvements is less `open-
minded', but there are advantages in their stability. Whenever a perception is
(totally) improved, one of the �rst questions that will be asked is whether the
(total) improvement is monotone or not.

Example 15 The f-Total Improvement, designated %f, of a perception P = hI; %i,
takes every u value of perception to an f value: For all pairs (w; �) in E � I,

%f(w; �) = %(w; �) if %(w; �) 6= u, otherwise %f(w; �) = f. This improvement
is monotone. It represents an acceptable `default' strategy.

Example 16 The t-Total Improvement, designated %t, of a perception P = hI ; %i,
takes every u value of perception to a t value: For all pairs (w; �) in E � I,
%t(w; �) = %(w; �) if %(w; �) 6= u, otherwise %t(w; �) = t. This improvement
is monotone as well.

The idea of monotone total improvements has a conservative 
avor. However,
there is quite a variety within monotone total improvements, and anything which
is unde�ned could still turn to be either true or false. (As demonstrated, for
example, by the f- and t- total improvements.)

To be able to restrict ourselves to monotone p-morphisms only (including, of
course, monotone improvements and total improvements), a subcategory is de-
�ned within the category of perceptions. (A subcategory consists of (subsets of)
objects and morphisms from the category, such that composition and identities
in the subcategory coincide with those of the category).

De�nition 8 PrcMon
E , the Monotone Subcategory of perceptions, con-

sists of:

� All the perceptions of PrcE .

� Monotone P-Morphisms, h : P ! Q, such that ��� ) h(�)�h(�)

Proposition 5 PrcMon
E is a subcategory of PrcE .
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Example 17 Following example 12 of synonyms, there may be an improving
p-morphism (see example 6) into an improved `customer' perception of the book-
store where some books with big-red-stickers are not good-price. In that case the
improvement p-morphism is not in PrcMon

E .

5.4 Summary of Section 5

In the quest for structure in the set of connotations one may detect lawlike
orders and patterns. Two relations were de�ned and exempli�ed: synonyms
and subsumptions. Subsumptions de�ne a quasi order on any perception, and
in *perceptions, where all synonyms are merged, one even gets as much as a
partial order. Synonyms and subsumptions are not necessarily preserved by
p-morphisms. For that reason the monotone subcategory of perceptions was
de�ned, which constitutes all perceptions, but only the p-morphisms that pre-
serve the two relations.

6 Boolean Perceptions

The previous section gave us a lead to the structure of perceptions: Perceptions
are naturally endowed with a quasi order, and *perceptions (where synonyms
are merged) are similarly endowed with a partial order. The structure of a
lattice thus comes to mind. Links in the lattice may capture relationships which
are implicit in a perception. Since the purpose of this study is to have agents
possess very structured and expressive perceptions, let us continue with this
suggestive idea even further. Let us see what happens if a perception has a set of
connotations which has the structure of a complemented and distributive lattice,
namely a Boolean algebra. This is, in a sense, the most structured form of a
partially ordered set. Indeed, lattices can alternatively be de�ned in terms of the
two operations _ and ^. On the intuitive level, it is not unnatural to expect that
an intelligent arti�cial agent should have a perception of connotations that are
Boolean combinations of other connotations. In example 2 it would be natural
for perceptions to have connotations such as (topic-of-interest^good-price), or
(not-interesting_got-it-already), or (:thick).

It is remembered, however, that a quasi ordered set is still far from being a
Boolean algebra, and perceptions, as de�ned so far, do not generally have such
a complex structure. The gap should somehow be closed. We �rst de�ne and
study perceptions with a Boolean set of connotations. Later, we shall examine
various ways of marrying the concreteness of basic perceptions with the powers
of abstraction of the Boolean structure.

6.1 Permits

If the set of connotations is closed under Boolean connectives, then an arbitrary
p-predicate (as allowed until now) might violate a certain sense of adequacy
to the external world. Whereas our original de�nition of perceptions had ev-
ery connotation perceived independently of the other connotations, the new
construct calls for some kind of dependence between the p-predicate values of
di�erent connotations that are dependent in the Boolean sense. As an example,
if a w-element has both connotations � and �, then an agent claiming that this
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w-element lacks � ^ � could hardly be described as `intelligent'. Technically,
this would disgrace the quali�cation of % as a predicate.

Consider the universal perception of de�nition 2. Its set of connotations 2E is,
of course, a Boolean algebra with the set-theoretical operations of conjunction,
disjunction and complementation. It is easy to see that the universal p-predicate
is `well behaved'. As an example, if a w-element in E has both connotations
A;B � E then this w-element is an element of both subsets A and B. w is thus
an element of both their union A [ B and their intersection A \ B, and hence
it has the connotation A _ B as well as A ^ B, as expected.

In the case of a total, two valued, p-predicate there is a known classical
manner in which a two valued predicate should be de�ned on a Boolean algebra.
In the present case, however, the p-predicate is three-valued. We have to �nd
a sensible way to embed a three-valued predicate in a Boolean algebra. This
will be �rst done in a global, categorical manner, without surgery into speci�c
w-elements, connotations or predicates.

The de�nition of Boolean perceptions will `test' these perceptions against
the universal perception that was just shown to `behave well'. Such a `test'
is neatly cast as a p-morphism into the universal perception. By example 8,
p-morphisms from any perception P into the universal perception always exist:

� Let bh : P ! bP be a total improvement of P.

� De�ne the natural p-morphism � from bP into UE :
�(�) = fw 2 Ekb%(w;�) = tg.

� h = bh � � de�nes a p-morphism from P to UE .

h is not unique. For C = hB; �i with a Boolean algebra of connotations to be a
b-perception, it will be necessary that at least one of these p-morphisms should
be based on a mapping that is a Boolean homomorphism.

De�nition 9 Let C = hB; �i be a perception such that B is a Boolean algebra.
A Permit of C, if it exists, is a total improvement of C that yields a natural
morphism into UE which is a Boolean homomorphism of the connotations.

As with improvements in general (see example 6), we shall use the word permit
to designate either the improving p-morphism or, alternatively, the target total
p-predicate. These two concepts uniquely imply one another.

Example 18 There are `seemingly well behaved' total improvements that are
not permits. Two of them are the f-total and the t-total improvements (examples
15 and 16). In the case where �(w; �) = �(w;:�) = u, any permit should have
one of the values t and the other f, while these improvements assign the same
value to both.

An improvement (example 6) consists of assigning de�nite values to some of
the cases where the p-predicate has had a u value. It is thus very similar to a
partial formation of a `possible world' [37]. In case of a total improvement (as
in example 8), there is an assignment of de�nite values to all those cases, and it
is thus similar to a total formation of a possible world . If % represents a partial
perception of the environment, then a total improvement b% is a total description
of one possible perception for hI; %i.
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A permit thus indicates a possible perception with regard to the incomplete
information represented by the b-perception hB; �i. This possible perception has
the additional property that it is `sensible', in that it can be naturally mapped
in a Boolean way into the universal perception. It thus `arranges' the world E
in a sensible way.

6.2 De�nition and Categorical Status of Boolean Percep-

tions

De�nition 10 Let a perception C = hB; �i be such that B is a Boolean algebra.
C is a Boolean Perception b-perception for short, (� is a Boolean Percep-

tion Predicate, b-p-predicate for short) if:

1. It has a permit as in de�nition 9.

2. Closure of the b-p-predicate: Let VC be the (nonempty) set of permits of
C, then, for all w 2 E and for all � 2 B:

�(w; �) =

8<
:

t if 8b� 2 VC b�(w; �) = t

f if 8b� 2 VC b�(w; �) = f

u otherwise

It is easy to see that the p-predicate � is uniquely determined by the permits.

Example 19 UE itself is a b-perception with the identity as its unique permit.

By de�nition 9 permits are based on Boolean homomorphisms into the universal
perception. Since Boolean homomorphisms always map top to top and bottom
to bottom, then:

Corollary 1 If C = hB; �i is a b-perception, then �(w;>) = t, �(w;?) = f.

B-perceptions are perceptions by de�nition, hence they constitute a subset of
the objects in the category PrcE . This subset will be designated Prc

bl
E , and its

elements are of the form hB; �i (to make a notational di�erence from hI ; %i). To
de�ne PrcblE as a subcategory one �rst has to establish the p-morphisms which
could be applied within this subcategory. The expected, natural, requirement
is that the additional, i.e. Boolean, structure be preserved.

De�nition 11 Let C1 = hB1; �1i and C2 = hB2; �2i be b-perceptions. A p-
morphism f : C1 ! C2 is a Boolean Perception Morphism, b-p-morphism
for short, if the mapping f : B1 ! B2 is a Boolean homomorphism.

Example 20 In example 5, if the perceptions involved were Boolean, then a b-
p-morphism between them would open the possibility for a more complex model
of the customer such as:

(authornameN_authornameM
h
7!hmm),

(art^leather-bound^:thick
h
7! makes-a-perfect-present^buy-it).

Example 21 Consider color blindness. Let E be any environment of colorful
w-elements, let P1 be a `red-blind' perception, and let P2 be a `normal' color
perception. A p-morphism h : P1 ! P2 needs to use Boolean combinations:

(yellowgreen
h
7!yellow_green), (cyanwhite

h
7!cyan_white),

(bluemagenta
h
7!blue_magenta), (blackred

h
7!black_red),
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Since Boolean homomorphisms are closed under composition, then:

Lemma 2 PrcblE with b-p-morphisms is a subcategory of PrcE .

6.3 Equivalent Characterizations of Boolean Perceptions

De�nition 10 is an external, categorical one. One might want to fathom its
details and consequences, and, in particular, to show that the natural expecta-
tions from a b-p-predicate are ful�lled. The main `internal' result is lemma 3
below. It provides a formulation of a necessary and su�cient condition for the
recognition of b-perceptions `from inside'. The technical details and proofs that
lead to this lemma are given in appendix A.1.

Lemma 3 A perception C = hB; �i such that the set B of connotations is a
Boolean algebra is a b-perception if and only if for all w 2 E:

1. The set f� 2 Bk�(w; �) = tg is a �lter.

2. The set f� 2 Bk�(w; �) = fg is an ideal.

3. The above �lter and ideal are dual one to the other: for all � in B,
�(w; �) = t if and only if �(w;:�) = f.

The permits of a b-perception are de�ned by all the possible maximal ideals
(and dual maximal �lters) that include the ideal (and dual �lter) of lemma 3.
Classical two valued predicates on a Boolean algebra are characterized by such
a division into a maximal ideal and a dual maximal �lter. This is, in a certain
sense, the point where the present study meets the classical theory that admits
only total descriptions and two truth values. Loosely: b-perceptions are neither
total nor two valued, but they have the potential of evolving into total two
valued perceptions.

6.4 Computing Boolean Perception Predicates

Any agent that uses a b-perception for practical purposes will eventually deal
with perception of speci�c w-elements and their connotations. It might need the
value of �(w; �) for some w 2 E and a connotation � 2 B. While the categorical
approach gives the whole discussion its formal support, it would not be practical
for an agent to deal with possible perceptions, ideals, and �lters, every time it
needs the value of some �(w; �). A deductive apparatus is needed to guide the
computation of the values of the p-predicate directly from the basic perception.
Ideals are closed under disjunction and under subsumption from below, while
�lters are closed under conjunction and under subsumption from above. This
gives us the insight we needed into the behavior of b-p-predicates, and provides
us with truth tables:

Lemma 4 Let C = hB; �i be a b-perception. The Truth Tables for the b-p-
predicate � are given by tables 1, 2, 3. (In these tables � designates the con-
ventional Boolean partial order, de�ned by the Boolean algebraic Law of Con-
sistency.)

The proof is given in appendix A.1. It is noted that the truth tables are not
an arbitrary choice of some three-valued logic, but rather a result of the global
categorical structure.
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Table 1: Negation in Boolean Perceptions
�(w; �) �(w;:�)

t f

f t

u u

Table 2: Disjunction in Boolean Perceptions
�(w; � _ �)

�(w; �) t f u

�(w; �)
t t t t

f t f u

u t u

�
t if (:�)�� (also (:�)�� and � _ � = >)
u otherwise

6.5 Summary of Section 6

The category of perceptions has a subcategory of b-perceptions where the sets
of connotations are Boolean algebras and the p-predicates are restricted ac-
cordingly. An agent with b-perception has an adequate perception of Boolean
combinations of connotations. B-perceptions can be characterized in more then
one way:

� Their de�nition (10) in terms of possible total perceptions (permits) is of
a category theoretical, global, nature.

� B-perceptions can be characterized with the necessary and su�cient Boolean
algebraic conditions of lemma 3, using proper ideals and their dual proper
�lters.

Lemma 4 provides a deductive apparatus that may be algorithmically applied for
the computation of speci�c values of the b-p-predicate. These truth tables show
that the categorical de�nition yields a p-predicate that is `Boolean adequate' in
a certain common sense of the term.

Table 3: Conjunction in Boolean Perceptions
�(w; � ^ �)

�(w; �) t f u

�(w; �)
t t f u

f f f f

u u f

�
f if ��(:�) (also ��(:�) and � ^ � = ?)
u otherwise
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7 Free Generation of Boolean Perceptions

A general perception has a quasi ordered set of connotations (proposition 3),
but this is still far from being a Boolean algebra as required for the perceptions
of the Boolean subcategory presented above. Closing this gap means �nding a
way to somehow form a Boolean version of any perception, and thus marry the
concreteness of basic perceptions with the powers of abstraction of the Boolean
structure.

For simple perceptions the connection between w-elements and connotations
is innate. It emerges from the sensory-motor-neural apparatus, and accepted as
it is. The main property of an agent with this perception is the very fact that
it has a direct perception of the environment. For b-perceptions, on the other
hand, there is already some kind of structure imposed on perception. Not every
predicate will do, and the predicate is subject to an adequacy condition which
stems from abstract arguments about the meaning of the connectives `or', `and',
`not'. These connectives do not have an objective existence in the environment.
They are de�ned in an abstract way, creations of symbolic processing. In this
sense b-perceptions have a somewhat abstractive 
avor, a 
avor one expects
from cognitive perceptions.

The following step is to try and combine the advantages of simple perceptions
with those of b-perceptions. An agent could, hopefully, relate to its environ-
ment via direct perception as in PrcE , and at the same time process its basic
perception in an abstractive way as in PrcblE . This could be a step towards a
certain intuition about arti�cial cognition.

The most general Boolean generation over a given perception is introduced
and studied, then evaluated.

7.1 De�nition of Free Boolean Perceptions

Trying to integrate Boolean features into a simple perception naturally means
that the set of connotations will have to somehow be closed under Boolean
operations. At the same time one wants to preserve perception of the generating
connotations. The categorical environment provides a neat formulation of that:
If hI ; %i 2 PrcE is a perception, one is looking for a generating p-morphism:
� : hI ; %i ! hB; �i such that

� �(I) is a set of generators for the Boolean algebra B. (This guarantees
closure under Boolean operations.)

� � is a rigid p-morphism. (This guarantees that perception of the generating
connotations is preserved.)

C = hB; �i could, hopefully, serve as a b-perception for the agent that was, so
far, equipped with P = hI; %i only.

The simplest and most general way to close I under Boolean operations is
to take this set of original connotations as free generators . The free Boolean
algebra over I will be designated Bfr

I . Its main property (see �gure 1) is that
for any Boolean algebra B and for any mapping f : I ! B there exists a unique
extension h of f which is a Boolean homomorphism h : Bfr

I ! B. One is thus
looking for a Boolean generation of the form �fr : hI; %i ! hBfr

I ; %
fri where Bfr

I
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Figure 1: The Free Boolean Algebra over I

is freely generated by I, �fr is the inclusion map of generators, and it remains
to de�ne %fr.

For hBfr
I ; %

fri to be Boolean, by de�nition 10, it needs to have a permit.
Obviously, any such permit would be an extension of some total improvement
of % since I � Bfr

I . On the other hand, by the freedom of Bfr
I :

Lemma 5 Let P = hI ; %i be a perception. Let Bfr
I be the free Boolean algebra

generated over I. Every total improvement b% of % can be uniquely extended into
a total b-p-predicate: b%bl : E � Bfr

I ! ft; fg.

It follows that the Boolean extensions of the total improvements of the generat-
ing perception P are exactly all the `candidate' permits of a Boolean generation
based on the free Boolean algebra Bfr

I of connotations. For the sake of generality
it is desirable that all of them should be permits. The p-predicate %fr will be
thus de�ned to accommodate all these possible permits (the designation b%bl is
used as in lemma 5).

De�nition 12 Let P = hI ; %i be a perception. The Free b-perception over

P, designated Cfr = hBfr
I ; %

fri, is de�ned:

� Bfr
I , the set of connotations, is the free Boolean algebra generated over I.

� Let VP be the set of total improvements of P. %fr, the free b-p-predicate,
is de�ned, for all w 2 E and for all � 2 Bfr

I , by:

%fr(w; �) =

8<
:

t if and only if 8b% 2 VP b%bl(w; �) = t

f if and only if 8b% 2 VP b%bl(w; �) = f

u otherwise

By de�nition 12 that uses all total improvements b% as a basis for permits, one
can conclude that �fr does what it was expected to do:

Corollary 2 �fr(I) is a set of generators for the Boolean algebra Bfr
I , and �

fr

is a rigid p-morphism.

Example 22 Let P be a bookstore perception as in section 4.1. The free b-
perception over P would have connotations that consist of all possible Boolean
combinations of the generating connotations, with b-p-predicate values that are
computed by the truth tables of lemma 4.
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Figure 2: Boolean Perception Generation with Morphisms

7.2 Free Boolean Generation as a Functor

The generation of a b-perception over any given perception as de�ned above is
a mapping from the category of perceptions into the Boolean subcategory:

Gfr : PrcE ! PrcblE : P 7! Cfr

It comes together with the generating morphism �fr : P ! Cfr. A few things are
to be expected from the Gfr mapping, if it is supposed to generate a b-perception
over any given simple perception in a `methodical' manner:

1. If two perceptions were able to communicate as simple perceptions via a
p-morphism f : P ! Q, then this communication should be preserved by
Boolean generation: Gfr should provide an extension of f which is a b-p-
morphism: Gfr(f) : Gfr(P)! Gfr(Q), and the diagram in �gure 2 should be
commutative. The only de�nition that could do this is the following: Let
h : Bfr

I ! Bfr
J be the unique extension of the mapping I ! Bfr

J : � 7! f(�)
into a Boolean homomorphism such that 8� 2 I h(�) = f(�). De�ne
Gfr(f) by � 7! h(�). (We still have to show that this is a b-p-morphism.)

2. The provided communication between the Boolean generations should pre-
serve compositions:

Gfr(f � g) = Gfr(f) � Gfr(g)

The categorical framework provides well developed concepts for the above: Gfr

needs to be a functor, and �fr should be a natural transformation from the
identity functor on PrcE to the functor Gfr. An immediate example result of
this demand is that Gfr should generate isomorphic b-perceptions over isomor-
phic perceptions - a very plausible expectation. The functor is thus a formal
guarantee that agents are generating b-perceptions in a consistent, methodical
way. This is an instance where categorization of perceptions provides us with
tools of scrutiny that capture certain pretheoretical intuitions about cognitive
perceptions.

Lemma 6 Let P = hI; %i, Q = hJ ; �i, and let f : P ! Q be a p-morphism.
Let Gfr(P) = hBfr

I ; %
fri, and Gfr(Q) = hBfr

J ; �
fri. Let h : Bfr

I ! Bfr
J be the unique

extension of the mapping I ! Bfr
J : � 7! f(�) into a Boolean homomorphism

such that 8� 2 I h(�) = f(�). Then the mapping Gfr(f) : Gfr(P) ! Gfr(Q),
de�ned by: � 7! h(�), is a b-p-morphism such that the diagram of �gure 2 is
commutative.
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Figure 3: Freedom of Boolean Perception Generation

The proof is given in appendix A.2. The essence of the proof is `rooting' the
diagram and all involved perceptions into the universal perception, using per-
mit arrows (i.e. possible perceptions). Permits and the universal perception
constitute the foundations of b-perceptions and hence a basis for all proofs.

It also follows from the de�nition of Gfr(f) that Gfr preserves compositions
and identities, and hence:

Corollary 3 �fr is a natural transformation from the identity functor on PrcE
to the functor Gfr.

7.3 Freedom of the Functor

There are additional things to expect from the generating functor Gfr that are
easily categorized. One of them is generality . In categorical terms, this neatly
translates to a free generation. The following lemma uses a standard category
theoretical characterization of freedom, as illustrated by �gure 3.

Lemma 7 Let P be a perception. Let Gfr : PrcE ! PrcblE : P 7! Cfr be as in
de�nition 12, and let �fr : P ! Gfr(P) be the rigid inclusion of generators. Then
for any b-perception C = hB; �i and any p-morphism f : P ! C there exists a
unique b-p-morphism  : Gfr(P)! C such that �fr �  = f .

Proof Outline. A natural transformation such as �fr always de�nes a free
functor: The de�nition of  is similar in nature to the de�nition of Gfr(f), and
the proof is similar to that of lemma 6, with C replacing Gfr(Q) and  replacing
h. 2

7.4 Computing Free Boolean Perception Predicates

The values of the p-predicate are innate and �xed for the generating perceptions.
When it comes to the Boolean closure the agent may use the truth tables of
lemma 4. These truth tables provide a deductive apparatus which may guide
the computation of the values of the p-predicate directly from the generating
perception. Since I is a set of generators for Bfr

I , the computation will eventually
`bottom out' at the generating perception hI; %i.

In this context we distinguish between two kinds of connotations in Bfr
I :

De�nition 13 Let � be a connotation in Bfr
I

� If � 2 I then it is a Simple or Generating Connotation.

� If � 62 I then it is a Complex or Derived connotation.
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In free Boolean generation the subset of complex connotations is, of course,
disjoint from the subset of simple connotations. Since Bfr

I is generated over I,
any � 2 Bfr

I is equal to a Boolean expression with simple connotations as its
atomic expressions. The agent can compute %fr(w; �), starting from its imme-
diate perception of the simple connotations that make � and using the truth
tables.

At the end of this study, in section 10, there is a discussion of some method-
ological fallout, where simple vs. complex connotations are discussed in sub-
section 10.1. Simple connotations are assumed to be closest to, and readily
recognized by, the sub-symbolic sensory-motor-neural apparatus of an arti�cial
agent, without further procedure. If � is a generating connotation, then the
value of %(w; �) emerges without need of a deductive apparatus (this `emer-
gence' could be based, for example, on a neural network). Higher level arti�cial
perception of derived connotations in the Boolean closure is achieved with due
recourse to the deductive apparatus 4.

More computational e�ort would be needed as the expression gets more com-
plex: the answer is expected to be as complex as the question. An algorithmic
implementation of the process should also detect general Boolean Bfr

I dependen-
cies within the expression, to deal with the lower right entries of the disjunction
and conjunction truth tables 2 and 3. It will be rewarded with more de�nite
values.

7.5 Summary of Section 7

Free Boolean generation provides a rigorous mathematical description of a me-
thodical cognitive transition from basic perceptions to b-perceptions. In ad-
dition to basic sensory-motor-neural perception, a capability of abstraction is
captured by an adequate perception of Boolean combinations of connotations.
An agent that performs this process may claim and show for fact that it is,
among other things, methodical (the natural functor), open minded , and gen-
eral (freedom of the generation and of Bfr

I ). This cognitive transition has some
good features, but it is maybe somewhat too free, too general. The following
sections consist of further attempts for a methodical Boolean generation with,
perhaps, better features.

8 Validity and Completeness in Boolean Percep-

tions

The perceptual order relations of subsumptions and synonyms gave rise to the
idea that the set of connotations is a lattice. B-perceptions were de�ned to follow
that idea, and structure a set of connotations as a complemented distributive
lattice: a Boolean algebra. Given a b-perception C = hB; �i, it is thus natural to
check whether the Boolean algebra captures the intended meaning. One needs
to compare two order relations within the carrier set B of connotations.

� The Boolean partial order, denoted �. It is a formal construct that comes
with the Boolean algebra, de�ned by the Boolean algebraic Law of Con-

4The reader is reminded that whether or not Boolean perception provides a suitable model
of human perception is not an issue of this study.
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sistency :

��� if and only if � ^ :� = ? if and only if :� _ � = >

� The Perceptual quasi order, denoted �, and set by de�nition 7:

��� if and only if 8w 2 E �(w; �)
Luk
�! �(w; �)

This order relation emerges from the agent's perception. It describes per-
ceptible patterns and was extensively discussed in section 5.2.

In this context of comparison between � and � within b-perceptions, we
de�ne:

De�nition 14 A b-perception C = hB; �i is Valid if, for all �; � 2 B, ��� )
���.

In a valid b-perception all the Boolean subsumptions re
ect perceptible �-
subsumptions. To justify the Boolean structure, b-perceptions should be, at
least, valid: patterns re
ected by the structure should be supported by percep-
tion. This was the motivation for b-perceptions (see section 6).

Example 23 The universal perception UE , is valid: for all A;B � E, A � B )
A�B.

The corresponding concept of Completeness comes immediately to mind,
with the converse implication: ��� ) ���. In a complete b-perception all
perceptible patterns should be re
ected by the Boolean structure. This also
captures a certain intuition about the Boolean structure serving as a `mental
image' that is generated by perception.

Before embarking on the actual de�nition of completeness in b-perceptions,
we need to restrict the de�nition of � for these perceptions. This extra care
is warranted by the three valued context. Assume that, in a b-perception
C = hB; �i, there are two connotations, �; � 2 B, such that, for all w 2 E ,
�(w; �) = �(w; �) = u. It follows that � and � are synonyms, also with their
negations, and all the following �-subsumptions hold:

��� ; ��:� ; :��� ; :��:�

If one substitutes all of them for the Boolean partial order �, one gets a de-
generate Boolean algebra: ? = >. This is, of course, undesirable. The most
one might want to do in this situation is merge the synonyms � and � into one
connotation (see section 5.1).

It is also easy to verify that this kind of problem occurs only in the mentioned
situation where 8w 2 E �(w; �) = �(w; �) = u.

De�nition 15 Let C = hB; �i be a b-perception, and let �; � 2 B. Then ���
if:

� 8w 2 E �(w; �)
Luk
�! �(w; �) as in de�nition 7.

� There exists some w 2 E such that either �(w; �) 6= u or �(w; �) 6= u

We are now ready to de�ne:
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De�nition 16 A b-perception C = hB; �i is Complete if, for all �; � 2 B,
��� ) ���

Example 24 The universal perception UE is complete: for all A;B � E, A�B )
A � B. This follows directly from its de�nition (2).

Having de�ned validity and completeness for b-perceptions, we proceed to ex-
amine where they hold. Validity of all b-perceptions is based on the validity of
their permits:

Proposition 6 Let C = hB; �i be a b-perception, let ���, and let b� be any one

of its permits. Then, for all w 2 E, b�(w; �) Luk
�! b�(w; �).

Proof. By the law of consistency and by the natural � : bC ! UE being a
Boolean homomorphism one gets (overline designates set complementation):

; = �(?) = �(� ^ :�) = �(�) \ �(�)

It follows that for no w 2 E could it be that both w 2 �(�) and w 2 �(�) at the

same time. Hence, for all w 2 E and for all permits b�, b�(w; �) Luk
�! b�(w; �). 2

By the closure condition of de�nition 10 it follows that, for all w in E , also

�(w; �)
Luk
�! �(w; �), and hence:

Corollary 4 b-perceptions are valid.

Example 25 By corollary 4 free Boolean generation of section 7 is valid: for
all �; � 2 Bfr

I , ��� ) ���.

As might have been expected, completeness is scarcer than validity. It turns
out that there is a connection between completeness of a b-perception and the
monotonicity of its permits.

Proposition 7 In a complete b-perception all permits are monotone.

Proof. Let C = hB; �i be a complete b-perception, and let b� be any one of its
permits. By completeness ��� implies ���, and by proposition 6 this implies

that, for all w 2 E , b�(w; �) Luk
�! b�(w; �). 2

To show incompleteness of a general free Boolean generation, recall that by
generating the free Boolean algebra over the set I of connotations, we ignored
%-subsumptions between them. These subsumptions are not re
ected by the
Boolean structure. The %-subsumption relation in P = hI ; %i is a subset of
the �-subsumption relation in Cfr = hBfr

I ; %
fri (By rigidity of the generating

morphism �fr). In section 5.3 it was shown that, in the general case, P has total
improvements b% that are non-monotone. They extend to permits of Cfr that do
not preserve � of P , and hence they are non-monotone permits of Cfr. It is
concluded that:

Lemma 8 Free Boolean generation is, in the general case, incomplete.

We have thus observed two disjoint sources for the perceptual order relation �
in a free Boolean generation:
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� By validity in Cfr, ��� implies that ���. These subsumptions are based
on abstract `logical speculations'. They are monotone in the sense that
they will hold with any permit (i.e. any possible improvement of percep-
tion).

� Observed lawlike patterns, the %-subsumptions that hold between the gen-
erating connotations. They are based on perceptual observations of `facts'
5. They are the cause of non-monotonicity of some permits of Cfr, and
also the cause of incompleteness of Cfr.

Complete b-perceptions constitute a subset, designated Prcbl{cmp
E , of the objects

of PrcE and of PrcblE . It is easy to see that:

Lemma 9 Prcbl{cmp
E with b-p-morphisms is a (full6) subcategory of the subcat-

egory PrcblE of b-perceptions.

It was just shown that PrcblE 6= Prcbl{cmp
E . On the other hand, by example 24,

Prcbl{cmp
E is not empty: the universal perception is a complete b-perception.

8.1 Completion of Boolean Perceptions

Consider an incomplete b-perception C = hB; �i. `Internalization' of all observed
�-subsumptions ��� means actually changing the structure of the Boolean
lattice of connotations, `moving things around' in order that ��� should hold
as well. The situation may be �guratively compared to the situation of an
analyst who internalizes all the experimental lab results. That done, he may
lean back in his armchair, close his eyes, and �gure out all the rest. (Eventually
he may open one eye to ask for additional experimental results, namely improved
generating perception).

We shall now use the categorical framework and Boolean tools for a method-
ical modi�cation of any b-perception (and free Boolean generation in particular)
so that it should not only be valid, but complete as well: the arti�cial agent will
thus have a rigorous tool for the internalization of its perceptual observations
and the creation of a meaningful cognitive image of its environment.

Let C be a b-perception. In the categorical, arrowed, context one is looking
for a b-p-morphism �cmp : C ! C, such that C = hB; �i is complete: whenever
��� holds then ��� holds as well. C could, hopefully, replace C as the agent's
b-perception. A few natural requirements are:

� In the case where C is already complete �cmp should be the identity.

� �cmp should be �-monotone: the idea is to preserve the �-subsumptions,
not to discard them.

� �cmp should introduce a minimal modi�cation of C: no change except for
that which is needed for completeness.

There are standard Boolean concepts (related to the Boolean algebra of conno-
tations B) that can neatly do what we want:

5Perception follows, in this context, the scienti�c enquiry principle Hypotheses non �ngo

[11, Newton, page 261].
6Full means that all b-p-morphisms between perceptions are `inherited' from Prc

bl
E
, so

that Prc
bl{cmp
E

is fully determined by its collection of perceptions.
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� The set of elements: S = f� ^ :�k ���g.

� The ideal 4 that is generated by S, 4 = f� 2 Bk��
W
s2S sg.

� The quotient algebra: B = B=4.

� The natural Boolean homomorphism into the quotient algebra:

�cmp : B ! B : � 7! [�]

By de�nition of the natural homomorphism, [�] = [�] if and only if � �= �.
This `congruence modulu 4' means that �^:� 2 4 and � ^:� 2 4. In
particular, [?] = [�] if and only if � 2 4.

It is easy to see from the de�nitions of S, 4, and B that:

� �-subsumptions are integrated into the Boolean algebra B: ��� implies
a Boolean subsumption in B: [�]�[�].

� If C is already complete then S = 4 = f?g, and hence �cmp is the identity.

� If B turns to be a set of connotations for a b-perception then, by validity,
�cmp will de�ne a �-monotone p-morphism.

� �cmp introduces the minimal necessary modi�cation of B, because4 is the
smallest ideal that includes S.

B is thus the candidate set of connotations for C (in appendix A.3, lemma 18,
it is shown that B is not a degenerate Boolean algebra). �cmp is the candidate
for the b-p-morphism onto C. It remains to properly de�ne a p-predicate for C.
This will be done in the obviously expected manner:

De�nition 17 Let C = hB; �i be a b-perception. Its Completed Perception,
C = hB; �i, consists of:

� B as de�ned above is the Boolean set of connotations.

� The p-predicate � : E � B ! ft; f; ug, where:

�(w; [�]) =

8<
:

t if 9� �= � such that �(w; �) = t

f if 9� �= � such that �(w; �) = f

u otherwise

In appendix A.3, proposition 8, it is shown that there is no con
ict in the
de�nition.

To establish the legitimacy of the construction, we show in appendix A.3,
proposition 9 through corollary 10, that:

� C has permits. Its permits are, exactly, all the monotone permits of C (it
is also shown that C does have monotone permits).

� The p-predicate � answers the closure condition for b-perceptions, from
de�nition 10.

� �cmp de�nes a b-p-morphism.
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�cmp �cmp

Gcmp(C) Gcmp(C0)

Gcmp(f) -

Figure 4: Boolean Perception Completion with Morphisms

The main result of this section (proven in appendix A.3) is:

Lemma 10 Let C = hB; �i be a b-perception. Its completed perception C =
hB; �i of de�nition 17 is a complete b-perception.

It is also shown (corollary 11) that the � subsumptions are exactly the �-
subsumptions: no new subsumptions are added.

Example 26 Consider a completion of the free b-perception that is generated
over the perception of example 2. If (in-bad-shape �

�fr :buy-it), then in the

completed perception one gets also (in-bad-shape � :buy-it), as part of the
Boolean structure. Intuitively, this subsumption is `mentally internalized'.

8.2 Completion as a Free Functor

As argued in section 7.2, a general and methodical cognitive transition is best
formalized by a free functor and a natural transformation. The transition from
a b-perception to a complete b-perception (as just described) will thus be for-

malized by a free functor (Gcmp) into Prcbl{cmp
E , Gcmp(C) = C, and we will show

that �cmp is a natural transformation from the identity functor on the domain
subcategory to the functor Gcmp. In particular, if two b-perceptions were able
to communicate using a b-p-morphism f : C ! C0, then Gcmp should provide a
b-p-morphism for communication between the completed perceptions:

Gcmp(f) : Gcmp(C)! Gcmp(C0)

Such that the diagram in �gure 4 should be commutative. However, the results
of the former subsection 8.1 predict that only monotone b-p-morphisms f could
�t into that diagram.

In the general case, there may be b-p-morphisms in PrcblE that are non-
monotone. This may be exempli�ed in the context of free b-perception genera-
tion, with which we are familiar from section 7: Assume that, in a given percep-
tion P = hI ; %i, ���. Assume further that P communicates, using f : P ! Q,
with a perception Q = hJ ; � i, but f(�)6�f(�), so that f is non-%-monotone.
Consider the respective free Boolean generations Gfr(P) and Gfr(Q). In Gfr(P),
��� holds, but � 6�� because � and � are free generators. In Gfr(Q), f(�)6�f(�),
because f(�) and f(�) are free generators and because f(�)6�f(�). f can be
extended to a b-p-morphism between the respective free Boolean generations:
Gfr(f) : Gfr(P) ! Gfr(Q), and this extension preserves f(P) (see �gure 2), so
that Gfr(f)(�) 6�Gfr(f)(�). Let us now `complete' the b-perceptions Gfr(P) and
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Gfr(Q), into Gfr(P) and Gfr(Q), respectively. Gfr(f) cannot be properly extended
to a b-p-morphism between these complete b-perceptions, since now ��� but
f(�)6�f(�).

Example 27 Consider two `bookstore' `customer' perceptions as in example 2.
Assume that, in P = hI ; %i, (buy-it �heard-of-it). Assume that P communi-

cates, using (�
h
7!�), with a perception Q = hJ ; � i, but

(h(buy-it) 6�h(heard-of-it)), so that h is non-%-monotone. The story in every-
day words: P buys any book only after having heard of it. P is not certain
whether he has heard about a speci�c book, and therefore he is also not certain
whether he wants to buy that book. Q does not have the same rules, says `so
what!' and is ready to buy the book in spite of not having heard of it. They are
having a row because of that. They usually communicate well, but some rules
of P keep causing trouble between them. h can be extended to a b-p-morphism
between the respective free Boolean generations, but it cannot be properly ex-
tended to a b-p-morphism between the complete b-perceptions. P and Q could
pursue `casual' communication only, using their basic apparatus (namely h), or
free Boolean generation (namely Gfr(h)) at most. (e.g. they can talk about the
weather - basic perception with, perhaps, some heady but neutral logical specu-
lations). Introduction of `own' lawlike structures by way of completeness ruins
the communication. The anthropomorphism should not be misleading. Humans
communicate for a multitude of motives. We are capable of containing, even
enjoying, this kind of trouble. Arti�cial perceptions are conceived for practical
purposes, so that non-monotonicity cannot be ignored.

We are thus going to de�ne a functor Gcmp for the completion of b-perceptions
on a subcategory, designated Prcbl{mon

E , that includes all b-perceptions but only
monotone b-p-morphisms . Gcmp will be a free functor, and �cmp will be a natural
transformation from the identity functor on Prcbl{mon

E to Gcmp:

Lemma 11 Let C be a b-perception. Let

Gcmp : Prcbl{mon
E ! Prcbl{cmp

E : C 7! C ; �cmp : C ! Gcmp(C)

be as in de�nition 17. Then for any other complete b-perception C0 and for
any monotone b-p-morphism f : C ! C0, there exists a unique b-p-morphism
 : C ! C0 such that �cmp �  = f (see �gure 5).

Proof. De�ne  by [�] 7! f(�). Clearly, �cmp �  = f , and the de�nition is
unique since �cmp is onto.  is a b-p-morphism by f being one, and by showing
that, for all �; � 2 B, � �= � implies that f(�) = f(�). The proof is similar to
that of proposition 10 of appendix A, with the Boolean monotone f replacing b�,
completeness of C0 replacing that of the universal perception, and ? replacing
;. 2

8.3 Summary of Section 8

Arti�cial agents with b-perceptions may perform a methodical cognitive tran-
sition to complete b-perceptions. The transition consists of a complete inter-
nalization of perceptually observed patterns into the Boolean structure. The
process is formalized by a free functor from the subcategory of b-perceptions
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Figure 6: Composite generation with Morphisms

with monotone b-p-morphisms into the subcategory of complete b-perceptions.
However, b-perceptions with non-monotone communication cannot pursue this
communication after the transition.

9 Sketching Complete Boolean Perceptions

In the last two sections two free generations were introduced. The �rst free func-
tor, Gfr, generates a b-perception over any perception. The second one, Gcmp,
generates a complete b-perception over any b-perception. If one considers them
as simple mappings between sets of perceptions, then the set of b-perceptions
is both the codomain of Gfr and the domain of Gcmp, so that the mappings can
be composed:

Gfr � Gcmp : PrcE ! Prcbl{cmp
E

This is, however, not a legitimate composition of functors, since the domain
Prcbl{mon

E of Gcmp is a restriction of the codomain PrcblE of Gfr, and Gcmp is
unde�ned for the non-monotone morphisms of PrcblE . The composite mapping
can be applied to any perception P = hI ; %i. This would yield the perception

Gfr�Gcmp(P) = Cfr that is valid and complete. The bene�ts of such a perception
to an arti�cial intelligent agent were discussed in the previous section. We would
like to study under what conditions the composite mapping does de�ne a free
functor. Such a functor, if it exists, would de�ne a Free complete b-perceptions
generation. By section 8 one has to eliminate from PrcE the p-morphisms that
yield, under Gfr, non-monotone morphisms in PrcblE (see �gure 6). In other
words, certain communication paths between the generating perceptions will
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have to be eliminated for complete b-perception generation. Total improvements
are also cases of p-morphisms, and some of them will have to be eliminated as
well. (Indeed, we already know that the resulting complete b-perceptions are
less general than free Boolean generation in that they have less permits.) We
ask what exactly is the price in open-mindedness, namely in total improvements
of P and in communication paths. The non-%-monotone p-morphisms (and total
improvements) of P will obviously have to go: they extend to non-%fr-monotone
b-p-morphisms of Cfr. It seems, however, that the price is higher than that:

Example 28 Let �; � 2 I be two generating connotations such that, using truth
tables of %fr as in section 6.4, for all w 2 E, %(w; �) = %fr(w; �) = %fr(w;:�).
Clearly, � and :� are %fr-synonyms, as well as � and :�. (In a bookstore per-
ception these could be � =paperback and � =hardcover). Assume now that, for
some w 2 E, %(w; �) = %(w; �) = u. The f-total improvement (of example 15)
will de�nitely map neither pair of synonyms into the same universal perception
connotation. This total improvement is thus excluded from the domain of Gcmp,
because it is not a %fr-monotone permit of Cfr, although it is %-monotone!

In section 8 we have observed two disjoint sources for the perceptual order
relation �

�fr : the Boolean � and the observed �. However, the last example is
neither a free Boolean subsumption, nor a %-synonym or subsumption. There
could be `links of a third kind', traces of some Boolean structure in generating
perceptions. Complete Boolean generation forces us to discard p-morphisms
that are not committed to that structure.

9.1 Boolean Sketches

Boolean sketches are formal structures that capture traces of Boolean structure
in generating perceptions. It is a useful tool for de�nition and understanding
of complete Boolean generation. Let K be a set. We designate by KBE the Set
of all Boolean Expressions over K. Clearly, elements of KBE can be identi�ed
with elements of any Boolean algebra B that includes K, and, in particular, with
elements of the free Boolean algebra over K, designated Bfr

K. A Boolean Sketch
consists of a set K, together with a quasi-order on KBE that extends the usual
Boolean partial order. Formally:

De�nition 18 A Boolean Sketch is a pair hK; Ri where:

� K is a set.

� R is a quasi-order on KBE.

� R has a Boolean Property: let �bl�fr designate the Boolean partial
order on Bfr

K, then for all Boolean expressions e1; e2 2 K
BE, e1 �bl�fr e2

implies that e1Re2.

Hence the smallest quasi order R for hK; Ri is R = �bl�fr.

Example 29 Every Boolean algebra B is a boooean sketch hB;�i.

Example 30 If A � B is any subset of the elements of a Boolean algebra B
then hA;�i is a Boolean sketch.

The following example is the Boolean sketch that we need:

38



Example 31 Let P = hI ; %i be a perception, and let �
�fr be the perceptual order

relation of the free b-perception Cfr = hBfr
I ; %

fri, then hI ;�
�fri is a Boolean

sketch. �
�fr has the required Boolean property by validity of Cfr.

Clearly, � of hI; %i is included in �
�fr , but there are other sketch subsumptions

and synonyms, as well as other relationships in hI;�
�fri. We designate, for all

x; y 2 KBE :

� x subsumes y if xRy.

� x; y are synonyms if xRy and yRx.

� x; y are Disjoints if xR:y and yR:x.

� x; y are Complements if :xRy and :yRx.

� x; y are Antonyms if they are both disjoints and complements.

Clearly, in hI ;�
�fri, if x; y are atomic expressions and x subsumes y, then one

gets the familiar %-subsumption, and the same goes for synonyms. Disjoints,
complements, and antonyms cannot be expressed with %-synonyms and sub-
sumptions. It is easy to see that, for all expressions x; y 2 I :

� They are disjoints if and only if for all w 2 E :
%(w; x) = t) %(w; y) = f and %(w; y) = t) %(w; x) = f

� They are complements if and only if for all w 2 E :
%(w; x) = f) %(w; y) = t and %(w; y) = f) %(w; x) = t

� They are antonyms if and only if for all w 2 E :
%(w; x) = t, %(w; y) = f and %(w; y) = t, %(w; x) = f

The Boolean sketch structure is thus capable of capturing `links of the third
kind' as suspected before.

Example 32 In a bookstore perception, the following patterns could exist:

� edition1 subsumes :paperback.

� paperback and :hardcover are synonyms,
and hence paperback and hardcover are antonyms.

� For N 6= M priceN and priceM are Disjoints. This is actually an obser-
vation that a book can have at most one price in the given environment.

� ISBNn and
W
fISBNkgk 6=n are Complements. This is actually an obser-

vation that a book must have some ISBNi in the given environment.

� publisherN and
W
fpublisherKgK 6=N are antonyms. This is actually an

observation that a book must have exactly one publisher in the given envi-
ronment.
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Indeed, this is only an example of one possible perception with a speci�c en-
vironment. There may be environments that feature, for instance, books that
are co-published. In that case the last item above would not hold. As explained
before, perceptions are not meant to re
ect patterns that are necessarily `univer-
sal'.

In example 1 `families' of connotations were observed (such as topic con-
notations, title connotations, etc.). The formulation of disjoints, complements
and antonyms (and other Boolean patterns) as above intrinsically de�nes these
families, similar in spirit to the `quality dimensions' of a `conceptual space'
suggested by [21, 22, 23]. These `families' will be naturally integrated into the
Boolean structure.

Mappings between Boolean sketches that preserve the sketch structure will be
a useful concept for complete Boolean generation. To be able to formulate the
preservation of the sketch structure, one �rst needs to de�ne the meaning of a
set mapping when applied to the Boolean expressions over the set. This will
be done in the obvious way: Let f : K1 ! K2 be a set mapping. We de�ne
f : KBE

1 ! KBE2. By replacing every atom a 2 K1 in the domain expressions
by f(a) 2 K2 in the target expression. This is formally done by induction on
the structure of the expression: if e = a 2 K1 then f(e) = f(a), if e = :e0 then
f(e) = :f(e0), etc . . .

De�nition 19 Let hK1; R1i and hK2; R2i be two Boolean sketches. A set map-
ping f : K1 ! K2 is a Boolean Sketch Morphism f : hK1; R1i ! hK2; R2i
if, for all e1; e2 2 K

BE
1, e1R1e2 implies that f(e1)R2f(e2).

Example 33 Boolean algebras are a special case of Boolean sketches (as in
example 29). In that case Boolean homomorphisms between them are Boolean
sketch morphisms.

Example 34 Consider a Boolean sketch as in example 30. The restriction of
a Boolean homomorphism on the relevant subalgebra that is generated by A is a
Boolean sketch morphism.

The sketch morphisms that we are after are arrows between Boolean sketches
hI ;�

�fri as in example 31. The following lemma follows directly from the de�-
nitions:

Lemma 12 Let f : P ! Q be a p-morphism (P = hI; %i, Q = hJ ; � i). Let
hBfr

I ; %
fri and hBfr

J ; �
fri be the corresponding free Boolean generations. Then

f : hI;�
�fri ! hJ ;�

� fri is a Boolean sketch morphism if and only if Gfr(f) :

Gfr(P)! Gfr(Q) is a %fr-monotone b-p-morphism.

The connection of Boolean sketches to the issues of this section is obvious now.
Lemma 12 provides the required information about the p-morphisms that are
able to `survive' a natural transformation that is based on the composite map-
ping �fr � �cmp: the ones that are sketch morphisms. Establishing the formal
categorical framework for that will lead to a better understanding of the com-
pletion process.

Lemma 13 Boolean sketches with sketch morphisms (composition and the iden-
tity sketch morphisms are de�ned at the set level) form a category.
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De�nition 20 Let P = hI ; %i and Q = hJ ; � i. f : P ! Q is a Sketch Struc-

tured P-Morphism if the set mapping f de�nes a Boolean sketch morphism
f : hI;�

�fri ! hJ ;�
� fri

Example 35 Sketch structured p-morphisms and (total) improvements are mono-
tone. However, there are monotone such arrows that are not sketch structured.
For instance the f-total improvement and the t-total improvement of exam-
ples 15 and 16 do not necessarily preserve sketch complements, disjoints, or
antonyms. The counter examples are, as in examples 18 and 28, based on cases
where � and � are complements, disjoints, or antonyms, but some w 2 E is such
that %(w; �) = %(w; �) = u.

To restrict oneself to consideration of perceptions with sketch structured mor-
phisms only, another subcategory of perceptions is introduced.

De�nition 21 PrcSkE , the Sketch Structured subcategory of perceptions,
consists of

� All the perceptions of PrcE .

� Sketch Structured p-morphisms only.

Obviously, PrcSkE is a subcategory of PrcE and of PrcMon
E .

Example 36 Consider the sketch structured subcategory of bookstore percep-
tions. If a perception P features the sketch antonyms
paperback and hardcover
then all the sketch structured p-morphisms h from this perception should pre-
serve that pattern:
h(paperback) and h(hardcover) should be sketch antonyms in h(P).

We are now �nally ready to de�ne the functor that generates a complete b-
perception over any given perception, and to show its natural transformation
and freedom properties (by lemma 12).

Corollary 5 De�ne the functor Gfr{cmp : PrcSkE ! Prcbl{cmp
E by:

Gfr{cmp(P) = Gfr � Gcmp(P) ; Gfr{cmp(f) = Gfr � Gcmp(f)

then �fr � �cmp : hI ; %i ! Cfr is a natural transformation from the identity
functor on PrcSkE to the functor Gfr{cmp, Gfr{cmp is free, and communications
are preserved in a way that the diagram of �gure 7 is commutative.

9.2 An Internal View of Free Complete Boolean Genera-

tion

Boolean sketches and the sketch structured subcategory of perceptions have
enabled the de�nition of a free generation Gfr{cmp of a complete b-perception
over any given perception. This is the global, categorical framework. It provides
an external characterization of

Gfr{cmp(P) = hBfr
I ; %

fri
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Having de�ned Boolean sketches, one can further acquire characterizations of

Bfr
I and %fr in terms of the generating perception P = hI; %i, rather than in the

general terms of de�nition 17.
We start with the characterization of the Boolean algebra of connotations

for free complete Boolean generation. Given a Boolean sketch hK; Ri, the quasi
order R (with its `Boolean property') provides a `sketchy' information about the
structure of some Boolean algebra over K. Sketch synonyms and subsumptions,
as well as complements, disjoints, and antonyms should all be built into this
Boolean algebra. By the standard category-theoretical procedure, one is looking
for a Boolean algebra BSk

K and a sketch morphism �Sk : hK; Ri ! BSk
K .

Lemma 14 (See �gure 8) Let hK; Ri be a Boolean sketch. In Bfr
K (the free

Boolean algebra over K), let 4R be the ideal that is generated by the set S =
fe1 ^ :e2ke1Re2g, let B

Sk
K = Bfr

K=4R be the quotient Boolean algebra, and let
�Sk : Bfr

K ! BSk
K be the natural Boolean homomorphism from the Boolean algebra

onto its quotient algebra. Then for every other Boolean algebra B and every
sketch morphism f : hK; Ri ! B there exists a unique Boolean homomorphism
 : BSk

K ! B that is a homomorphic extension of f : for all � 2 K, �Sk � (�) =
f(�). BSk

K will be called The free sketch structured Boolean algebra over hK; Ri.

Proof Outline. The proof is similar to that of lemma 11 in section 8.2, using
the freedom of Bfr

K, and showing that connotations that are congruent modulo
4R are mapped by the sketch morphism f to the same element of B. 2
Replacing the general hK; Ri by hI ;�

�fri, one gets the free sketch structured

Boolean algebra over hI ;�
�fri, designated B

Sk
I . On the other hand, in the gen-

eral Boolean construction of section 8.1, one may replace hBfr
I ; %

fri for C = hB; �i.
In that case 4R above replaces 4 and one gets the following characterizations,
in terms of the generating perception P :

Bfr
I = BSk

I ; �cmp = �Sk
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It remains to fathom the permits of free complete b-perceptions and their p-
predicates. The categorical de�nition 17 provides theoretical support but not

much insight into %fr. By substituting the universal perception UE instead of the
general C in the freedom corollary (5) of Gfr{cmp, one can see that the permits of
the free complete b-perception over P = hI ; %i are exactly the Boolean exten-
sions of the sketch structured total improvements of P. It was shown in section
8.1 that Gfr{cmp(P) has permits, and hence every P has sketch structured total
improvements.

The internal view of free complete b-perception generation can thus be sum-
marized by the following characterization. (A comparison with de�nition 12 of
free Boolean generation is recommended.)

Lemma 15 Let P = hI; %i be a perception, then the free complete b-perception
over P, Gfr{cmp(P) = hBSk

I ; %
cmpi, is such that:

� BSk
I , the set of connotations, is the free Boolean algebra generated over the

Boolean sketch hI;�
�fri.

� Let VSk
P be the set of all sketch structured total improvements of P, then

%cmp, the free complete b-p-predicate, is de�ned, for all w 2 E and
for all � 2 BSk

I , by:

%cmp(w; �) =

8<
:

t if and only if 8b% 2 VSk
P b%bl(w; �) = t

f if and only if 8b% 2 VSk
P b%bl(w; �) = f

u otherwise

� The generating morphism is �SkjI : hI ; %i ,! hBSk
I ; %

cmpi.

Indeed, %fr = %cmp. The characterizations introduced by lemma 15 are in terms
of the generating perception P .

9.3 Boolean Generations: Evaluation and Tying of Ends

The arti�cial agent, endowed with a basic perception and willing to make a
methodical cognitive transition to a b-perception, now has a choice between
free Boolean generation and free complete Boolean generation. This 
avor of
`self awareness' is enhanced by the categorical framework that allows a rigorous
comparison between the two. Whatever the choice, it can be argued, possibly
using the agent's own data. Both processes are natural transformations and
both are general.

The most obvious di�erences between the two generations are along a trade-
o� line between open-mindedness on one side and completeness on the other
side: Free generation is more open-minded in that it retains all communication
paths (i.e. p-morphisms) with other perceptions, and in that it does not rule
out any future possible improvement of its perception. For that purpose it ig-
nores all perceptually observed patterns that it might have been able to notice.
Free complete generation is less open-minded: to gain completeness of its cogni-
tive Boolean image of the environment it stops non-structured communications
with other perceptions (loosely: `those that do not agree with its conjectures
that are based on perceptually observed patterns'), and it rules out some future
improvements of its perception (loosely: `those that would defy its conjectures
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that are based on perceptually observed patterns'). The elimination of the non
sketch structured p-morphisms might not be a loss after all. Actually, one gets
a means of distinction between `deeper' and `shallower' communications (see ex-
ample 27). Sketch structured p-morphisms communicate between perceptions
that possess, in a certain sense, similar cognitive inner images, and this com-
munication enhances the similarity. In a case where more than one p-morphism
could communicate between two perceptions, it is clear that a sketch structured
one, if it exists, should be `preferred'.

Another issue for comparison is combinatorial. Free Boolean generation cre-
ates a Boolean set of connotations with 22

n

elements for n generating connota-
tions. It is the largest possible Boolean closure. In particular, if the generating
perception happens to be already Boolean, free Boolean generation is unable
to `sense' that and it leads to a combinatorial disaster. Free complete Boolean
generation, on the other hand, is sensitive both to Boolean structure and to
completeness. Whatever traces of Boolean structure the generating perception
has, they are built into the Boolean closure. In particular, if the generating
perception is already Boolean, it will only be completed, and if it is already
a complete b-perception then free complete Boolean generation is the iden-
tity. The minimization of the number of connotations is maximal: there are no
distinct synonyms and hence no redundancy of connotations in free complete
Boolean.

The above `smallest Boolean closure' feature of free complete Boolean gen-
eration has other e�ects. The transition from the totally free Boolean closure
to a smaller quotient algebra means, inevitably, a many-to-one b-p-morphism.
Distinct connotations in the free Boolean closure Bfr

I are merged. This may,
among other things, involve some unblurring of perception. In this context a
few questions may be raised:

� The generating morphism �fr of free Boolean generation was shown to
rigidly preserve the generating perception. Is this also true of the gener-
ating morphism �Sk of free complete Boolean generation?

� In free Boolean generation there is a clear distinction between simple and
complex connotations: the generating connotations are perceived with no
need of computation, while derived, connotations are Boolean combina-
tions of simple connotations and need computation to be perceived. This
distinction may be lost with free complete b-perceptions. Simple conno-
tations might get merged with complex ones.

� How do these modi�cations to perceptions a�ect the computation of the
free complete p-predicate?

The answer to these questions is best illustrated by an example:

Example 37 Let P = hI ; %i be a perception, where �; �; 
 2 I are connota-
tions. Let (��
), and let (��

�fr� ^ :
). In particular, it is possible that, for

some w 2 E, both %(w; �) = %(w; 
) = u. In that case %(w; �) is either for
u, and hence also %fr(w; �). However, by the de�nitions of section 8, not only
(� ^ :
 2 4), but also (� ^ :(� ^ :
) 2 4). It follows that, for all w 2 E,
%cmp(w; �^:
) = f, as well as %cmp(w�^:(�^:
)) = f, and hence it must be
that %cmp(w; �) = f. It is concluded that p-predicate values involving a simple
connotation � might have to be unblurred, � might get merged with the bottom
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connotation ?. This should, of course, a�ect computation of the b-p-predicate
for derived connotations that have � as an atom. :� is, of course, merged with
the top connotation > and the unblurring is from u to t.

For a more speci�c example, let P be the `bookstore catalog' perception of
example 1.
Let (�= travelguide),(
 = maps) and (�= no-map-travelguide).
If travelguide subsumes maps, and
no-map-travelguide subsumes (travelguide ^:maps),
then a complete b-perception with these subsumptions would not consider the
possibility of a w-element with the connotation no-map-travelguide, even if the
book is closed and hence its basic apparatus does not de�nitely rule out the
option.

One might say that by freely generating a complete b-perception, the agent
internalizes the Boolean sketch subsumptions to a point where it a�ects its
basic perception..

In section 8.1 we compared complete b-perception to the situation of an
analyst who internalizes all the experimental lab results (namely perceptual
observations), leans back in his armchair, closes his eyes, and �gures out all the
rest, eventually opening an eye to query the lab again. The unblurring of the
generating perceptions by free complete Boolean generation may be compared to
a situation where our analyst realizes that although its perception is unde�ned
at a certain point, %(w; �) = u, for all he knows, it must be that w should
have(lack) �, or else `he has it all wrong' (by section 2.4 his conjectures are
based, after all, on partial perception and non-monotonic logic). In scienti�c
research terminology, if hBSk

I ; %
cmpi is a `theory', then an experiment where the

de�nite value of %(w; �) is tested is one possible experiment for the veri�cation of
the theory. This is one of the cases where our analyst (i.e. the higher reasoning
module) might want to query the lab (i.e. the sensory-motor-neural module) for
improved perception. If he gets the unexpected value for %(w; �) he will open
the other eye, too.

These intuitive considerations can be neatly formalized by a closure of the
sketch structured subcategory of perceptions. De�nition 21 of that subcategory
will now have another version with a closure condition (just like that of de�nition
10 of b-perceptions):

De�nition 22 PrcSkE , the Closed sketch structured subcategory of per-

ceptions, consists of

� Perceptions P = hI ; %i of PrcE such that, if VSk
P is the set of all sketch

structured total improvements of P, then for all w 2 E and for all � 2 I,

%(w; �) =

8<
:

t if and only if 8b% 2 VSk
P b%(w; �) = t

f if and only if 8b% 2 VSk
P b%(w; �) = f

u otherwise

� Sketch structured p-morphisms only.

Remark 1 P has to be unblurred for a certain pair (w; �) if, and only if, all
sketch structured total improvements of P and hence all %frmonotone permits
of Cfr, unblur the p-predicate at this point. In terms of appendix A.3, this could
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happen if, and only if, either � or :� are elements of 40. It follows that such
an unblurring depends only on �(and not on w). This could be meaningful for
algorithmic implementations.

For a known price in `open-mindedness' (some p-predicates have to be modi�ed:

the agent `closes its mind' to certain possibilities), the closed version PrcSkE of
the sketch structured subcategory PrcSkE settles that:

� For all P 2 PrcSkE , the p-morphism �Sk : P ! Gfr{cmp(P) is rigid.

� The computation of %cmp using truth tables similar to those of section 6.4
still `bottoms-out' at the generating perception level. (Remark 1 should
be useful for algorithmic implementations.)

Free complete b-perceptions are indeed more complex than free Boolean per-
ceptions. One may compute the free complete b-p-predicate %cmp, using truth
tables similar to those of section 6.4. Detection of Boolean dependencies in BSk

I

(the lower right entries of the disjunction and conjunction truth tables of lemma
4) will be rewarded, as always, by more de�nite values. Only now there are more
such dependencies (compared to free Boolean generation), so that there is both
more to look for, as well as more to be gained. This should not be surprising: as
more e�orts are being invested in the agent's internal cognitive model, the agent
should be expected to come up with more answers to more complex questions.

As some distinctions between simple and complex connotations fade away,
it may be that, for some generating connotation � 2 I, and for some non-
atomic expression e 2 KBE , � and e are %fr-synonyms, and hence they are
merged in hBSk

I ; %
cmpi. In the case where a very complex connotation is merged

with a simple one, later computational e�orts could be reduced. Consider, for
instance, a case where w is a pretzel, pretzelshape is a simple connotation, holis-
tically recognized by the sensory-motor-neural apparatus, and � is a complex
formal description of a pretzel shape. %(w; pretzelshape) = t should be imme-
diate. %fr(w; �) necessitates computation, but %cmp(w; �) is immediate because
a complete b-perception means that the derived formal description of a pretzel
shape has been internalized: � =pretzelshape holds in the Boolean algebra of
connotations BSk

I .

9.4 Summary of Section 9

Free complete Boolean generation provides a rigorous mathematical description
of a direct methodical cognitive transition from basic perceptions to a valid and
complete inner image of the environment. In addition to the features of the
more general free Boolean generation, an agent that performs this process may
claim and show for fact that its own perceptual observations contribute enough
interesting material on top of the general Boolean speculations, so that it can
completely rely on the Boolean algebra of connotations for all it knows. The
mathematical framework allows for a detailed comparison between the more
general free Boolean generation and this generation.

Arti�cial perceptions observe and, consequently, create an internal image
of their environment. An agent with a free b-perception will never jump to a
conclusion, on the other hand, its perception is very general. It is not going to
feature neither mistakes, nor novel observations. It might be somewhat clumsy
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due to the huge size of its set of connotations. An agent with a free complete
b-perception has invested lots of e�ort in its cognitive image of the environment
and it is expected to come up with some interesting, novel observations. On
the other hand, some of them may be `far-fetched', because the agent jumped
to conclusions. Such an agent may also feature some welcome `shortcuts' in its
cognitive perception.

10 Methodological Fallout and Some AI Per-

spectives

10.1 Intermediate Boolean Generations and Embodied Per-

ception

The two canonical Boolean generations represent two extremes. A relation R,
where �bl�fr � R � �

�fr , could determine another Boolean sketch and ideal

(? � 4R � 4, where 4 is as in section 8.1). For free Boolean generation it is
the case that R = �bl�fr, and for free complete Boolean generation R = �

�fr .
In a typical case an agent's perception is, probably, somewhere between a free
b-perception and a free complete b-perception. In a typical situation the agent
has computed and internalized only some of the subsumptions between its con-
notations. Boolean sketch subsumptions may get arbitrarily complex and hard
to handle. For humans it may sometimes take a lifetime of intense contempla-
tion and expertise to internalize all perceptually observed patterns, and their
logical consequences, even in a restricted, specialized, professional environment
E . Besides complexity, there may be other reasons for the preference of a spe-
ci�c, `intermediate' R. A subset of subsumptions f���g may be, for instance,
supported by more positive de�nite values of the p-predicate (i.e. more w in E
such that %(w; �) = t and also %(w; �) = t.)

Out of the entire collection of intermediate Boolean generations, one merits
special attention. Free Monotone Boolean Generation is de�ned for R = �bl�fr[
�. In that case the Boolean set of connotations is the free Boolean algebra that
is generated over I with the quasi order �. (Alternatively: the free Boolean
algebra that is generated over I� with the partial order �). The set of permits
for that b-perception consists exactly of the Boolean extensions of monotone
total improvements of the generating perception, and this generation is free
over the monotone subcategory PrcMon

E .
Free monotone generation merits special attention because of the special role

that generating connotations play in perception. From the Boolean theoretic
point of view there are many alternative subsets of connotations in the Boolean
closure that could serve as generators. Some of them might even seem easier
to work with then others. Assume, for example, a set of free generators for
BSk
I , the sketch-structured Boolean algebra of connotations. If one started from

such a set of connotations as the generating set, then free generation would be
the same as free complete generation. However, we let the agent start from `its
own' set of generators I , the set of simple connotations. This set is assumed
to be perception speci�c, so that the categorical treatment must provide for an
arbitrary set of generating connotations. This approach is based on the back-
ground assumption that perception is subjective and embodied. Generating
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connotations are assumed to be innate to the agent's architecture, hard-wired
in its sensory-motor-neural apparatus. They have an integrity of their own,
serving as the most immediate and natural means of relating to its environ-
ment. Starting from the set of free generators to BSk

I , for example, would have
meant that all the sketch subsumptions are innate to the agent's own archi-
tecture and sensory-motor-neural apparatus. This is not always a reasonable
assumption. Considering that di�erent environments feature di�erent patterns,
this perception will not be able to adapt itself easily to some new environments.

The analog in human perception are basic level categories (sometimes also
called natural properties or natural kinds) extensively elaborated in [38]. They
were isolated by empirical studies as a signi�cant level of human interaction with
the external environment. They are the easiest to learn, remember, and use.
They are characterized, among other things, by fast identi�cation, single mental
images, shortest lexemes, and overall perceived shape (gestalt perception). It
is at this level that humans easily distinguish tigers from elephants. (One level
down things are more di�cult. It is harder to distinguish one species of gira�e
from another). Analogous to the ease of cognitive processing of basic level
human categories, simple connotations are assumed to be readily recognized
by the sensory-motor-neural apparatus of an arti�cial agent, without further
procedure. The single mental image and shortest lexemes ideas are analogous
to the fact that � is an atomic connotation expression. This gestalt perception
is assumed to be embodied in the architecture of the agent. Perception of
derived connotations in the Boolean closure is achieved with due recourse to
the deductive apparatus. This calls for an algorithmic treatment which might
involve access and retrieval procedures: a resource consuming cognitive e�ort.

It is reasonable to let the agent's internal imagery be organized at the nat-
ural level of its generating connotations. This is why the categorical treatment
assumes a perception speci�c set of connotational generators. There is nothing
in generating connotations that gives them an objective status external to the
agent. Reasoning and making inferences using Boolean perceptions may be �g-
uratively described as moving along the sloping lines of the lattice graph. In
that case the generating connotations are like glittering signposts that facilitate
navigation. They are a form of representation of the embodiment of perception.

In free monotone Boolean generation only subsumptions and synonyms be-
tween generating connotations are internalized. It should be expected that these
are observed �rst, like an easy path between two familiar signposts. Boolean
sketch subsumptions, on the other hand, necessitate complex Boolean connota-
tional expressions. Ockham's razor is also in favor of simpler patterns.

Another support for the preference of subsumptions and synonyms between
simple connotations also comes from arguments about inductive inference and
the problem of projectibility , explained in [25]. Inferences between derived
Boolean connotational expressions are not only harder to arrive at, they of-
ten seem far-fetched, counterintuitive, nonprojectible.

10.2 Constraints and Imagination in Boolean Perception

Subsumptions that are internalized by b-perceptions are actually constraints .
Free Boolean generation features no constraints (except the obvious Boolean
ones). Free Complete Boolean generation could be regarded as the result of the
cognitive internalization of constraints. The essence of generating the quotient
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Boolean algebra over an ideal is that the connotations of the ideal are `beamed
down' to the bottom ? of the quotient algebra, they are perceived as impossible,
and hence negative constraints . Dually, the negations of these connotations,
which constitute the respective dual �lter, are `beamed up' to the top >, and
perceived as positive constraints .

The generation of complete b-perceptions, with its restriction of the set
of possible total improvements, may have a conservative 
avor, yet one can
show that it is still capable of some imagination and abstraction. There may
be connotations that do not have a de�nite positive example but they do not
generate negative constraints. Dually, their negations do not have a de�nite
negative example, yet they do not generate positive constraints. Figuratively,
free complete Boolean generation can conceive a situation (formally: has a
permit) where a w-element has (lacks) a connotation that has no current de�nite
positive (negative) example.

To show the above, one needs to �nd generating connotations �,� such that:

� There exists some w0 2 E where either %(w0; �) = t and %(w0; �) = u, or
%(w0; �) = u and %(w0; �) = f. In that case the subsumption ��� does
not hold, neither do ��

�fr� and ���cmp�. However:

� There exists no w 2 E such that %(w; �) = t and %(w; �) = f. In that
case it is possible for � to subsume � in some future improvement of that
perception, there is no counter example.

In that case:

� %cmp(w0; � ^ :�) = u, so that the connotation � ^ :� is not a negative
constraint: � ^ :� 6= ?.

� For no w 2 E does the connotation �^:� hold. 8w 2 E %fr(w; �^:�) 6= t.

Connotations like � ^ :� above show that free complete Boolean generation
is still capable of imagination. Such connotations have no de�nite positive
example, yet they do not generate negative constraints. Dually, their negations
are connotations with no de�nite negative example, yet they do not generate
positive constraints.

Example 38 In our bookstore environment, let:
(� =children) and (� =bigprint), then no w-element is de�nitely both children
and :bigprint, but such a book is conceivable.

In section 5.2 a similarity was shown between Lukasiewicz's 3-valued condition-
als and our de�nition of subsumptions (and synonyms): ��� if and only if for
all w 2 E %(w; �) ! %(w; �) is t by Lukasiewicz's 3-valued conditional. One
case, t ! f, where this does not hold yields an f value, while the other two
cases (t ! i and i ! f) yield an inde�nite value (i). It turns out that this is
exactly the distinction that was made above. The second case that yields an f

value was eliminated while the cases that yield an inde�nite value were the ones
that demonstrate imagination. These are, actually, examples of (con)notations
without denotations , showing that free complete generation leaves room for ab-
straction: an inner representation that goes beyond things which are actually
perceived. The distinction between conceivable and inconceivable is the exis-
tence of a suitable permit. Of course, if a perception is totally 2-valued, then it
is its one and only permit: Total perceptions leave no room for imagination.
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10.3 Perception Morphisms Revisited

Perceptions vary across agents, modules, time, situations, goals, interests, etc.
The main tool of comparison and transition between them are p-morphisms. P-
morphisms provide a versatile tool that is able to capture a variety of cognitive
processes:

� Perhaps the most obvious use of a p-morphism is to `translate' between
di�erent perceptions of the same environment E , as shown in our `book-
store' examples. In this case the nature of the mapping (set-isomorphism,
one-to-one, onto, Boolean, impossible etc.) carries meticulous information
about how close these perceptions are. The extent of the modi�cation that
is introduced by a p-morphism is proportional to the extent of the change
that has caused it. In an AI environment these p-morphisms could be
used to:

{ Communicate and compare between distinct agents.

{ Communicate and compare between di�erent modules of the same
agent. Di�erent modules may use di�erent representations for their
di�erent purposes. If the reasoning module, for instance, was planned
independently of the sensory-motor-neural module, it may well be
that the former assumes a perception that is di�erent from the agent's
own generation. A suitable p-morphism would have to be used to
bridge between them. The nature of the mapping, if at all possible,
carries meticulous information about how well they �t.

{ The essence of some learning, discovery and other creative cognitive
processes is in �nding the most suitable representation (i.e. set of
connotations) for a given environment and goals. The shift in per-
ception, if possible, should be best formalized by a p-morphism.

� The current study was mostly dedicated to the construction of p-morphisms
that capture high-level representation formation: starting from a basic
perception, organize and shape a structured representation that can be
further used for high-level cognitive processes. The study further pro-
vided tools to determine where and when certain constructions might cost
a communication.

� A life-long autonomous agent is naturally expected to constantly improve
its perception and learn more about its environment. This improving
change of perception within the same set of connotations is also easily
captured by the family of `improving' p-morphisms.

� One of the aspects of cognitive behavior is the ability to preserve an in-
dividual perception within a society of other perceptions. In example 11
it was shown how categorical notions provide us with convenient tools of
scrutiny to formalize several forms of joint perceptions.

10.4 Learning and Knowledge Acquisition

The prime idea in the category of perceptions is that the agent could orga-
nize its internal representation relying only on its perception. There might be
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cases, however, where `outside advice' could save time or other computational
resources. The question is exactly how and where such outside advice could be
used in our context. For a given perception P = hI ; %i there are two families of
`facts':

� Primary facts . These are essentially the values of the p-predicate for all
w-elements and generating connotations.

� Derived facts , which consist of material that is derived from the primary
facts:

{ Synonyms, subsumptions, and Boolean sketch structure. These can
be attained by forms of inductive learning.

{ Values of the p-predicate for derived connotations, which may be
computed from the primary p-predicate using the deductive appara-
tus from section 6.4.

Technically speaking, any subset of facts could be directly entered into the
agent's memory.

The insertion of derived facts typically saves the time of the agent's own
processes. The agent could, theoretically at least, reach that fact all by itself.
This kind of `learning by being told' has as human analog one's communica-
tion with the heritage of its culture, its community's accumulative knowledge.
Nobody after Newton is expected to rediscover the law of gravity all by him-
self, one is simply being taught about it. One thus starts with all available
knowledge explicitly at hand, and can use its resources to acquire some genuine
new knowledge. Once a fact is internalized, there is no obvious way of telling
how it got there. There seem to be no methodological problem with the agent
acquiring any subset of these facts `by being told'. However, there is the usual
word of warning: In view of the subjectivity of perceptions, entering any fact
concerning w-elements and connotations presupposes that the interpretation of
these entities is shared by the `learner' and the `teacher'. If this is not the case,
an appropriate p-morphism should be used. In [19] it is explained how commu-
nication is the exchange of representations, while meanings are created within
the individual. Even with a p-morphism, one has to trust that the two sides
share meanings.

The direct insertion of primary facts is more problematic. `Telling' an agent
the value of %(w; �) is bypassing perception. As opposed to the insertion of a
derived fact, one could not always claim that the agent could, not even theo-
retically, reach that fact all by itself. If the agent has the de�nite perception
of the fact %(w; �), then it does not need `to be told' about it. If the agent's
perception has %(w; �) = u, it could perhaps sometimes be claimed that the
insertion of a de�nite value saves e�orts from the agent's sensory-motor-neural
apparatus: The agent could, for example, have checked inside the book for the
edition number, but to save e�orts this information could be inserted. Not all
u values of the p-predicate, however, are of this nature.

If a perception does not include either w or �, then %(w; �) does not mean
much. Faking `perception' this way brings us into Searle's Chinese room [54].
The facts could be entered into memory and retrieved at any time, but they are
not grounded by perception in the environment.
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11 Conclusion

It is generally accepted that true understanding can only be gained by actually
experiencing the world and thereby developing an internal representation of
it. Parallel to experiencing its environment, an intelligent arti�cial perception
should also need to `contemplate' about its experience. It would thus infer and
internalize facts that are needed for a valid (and possibly complete) internal
representation.

Almost forty years ago, Bar-Hillel was the �rst to point out the world model-
ing process that should go on in the mind of agents. In his case it was supposed
to guide understanding of natural language. Bar-Hillel wrote:

A translation machine should not only be supplied with a dictio-
nary but also with a universal encyclopedia. This is surely utterly
chimerical and hardly deserves any further discussion ... We know
... facts by inferences which we are able to perform ... instanta-
neously, and it is clear that they are not, in any serious sense, stored
in our memory. Though one could envisage that a machine would
be capable of performing the same inferences, there exists so far no
serious proposal for a scheme that would make a machine perform
such inferences in the same or similar circumstances under which
an intelligent human being would perform them. [5, pages 160-161]

The theory of arti�cial perceptions suggests that, theoretically, such encyclopae-
dias could perhaps be schemed and organized, individually for every perception
and environment, as Boolean perceptions generated over basic sensory-motor-
neural perceptions. Boolean algebras are, in a certain sense, bimodal: they
have the (somewhat tedious) aspect of symbolic processing using the Boolean
connectives, and, on the other hand, the non-symbolic iconographic aspect of
their lattice graphs with sloping lines (o�ering eventual shortcuts like `ladders
and ropes'). Facts and inferences could be internalized by the lattice structures
themselves, rather than conventionally stored in memories. Perceptive-cognitive
and reasoning processes would then perform by sliding along gratings of Boolean
trellises. Environments should train upon these trellises with tendrils provided
by the generating perceptions and clinging at the nodes of simple connotations.

The theory of arti�cial perceptions also provides general, categorical, tools
for creating particular encyclopaedias , as well as foundations for a general ac-
count of these structures and of relationships between them.

12 Future Research

This is a theoretical study that proposes a foundational mathematical `uni�ed
standard' for AI artifacts with perceptions, for their cognitive behavior, and
for dealing with them. Within the theoretical framework the ongoing study is
concerned with the study of cognitive processes that involve more then a single
environment at a time.

Although a few implementational considerations were touched in the context
of the computation of Boolean perception predicates, the theory still calls for
more research on complexity and implementational issues.
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The categorical approach is inherently `top-down'. Given the theory, future
research could now take a `bottom-up' approach. One may test the practical
applicability of the theory by:

� Designing architectures for AI artifacts in terms of the proposed theory.

� Analyzing existing artifacts in terms of the proposed theory.

One may start with the construction or analysis of basic arti�cial perceptions
with simple environments: w-elements, connotations, and the perception pred-
icate. One may proceed to design uniform ducts between these perceptions us-
ing perception morphisms, then further categorical and Boolean constructs that
capture the various cognitive processes, training on these basic perceptions.

Applying the terminology of this study to the environment of AI research
itself, future research concerning particular perceptive-cognitive AI artifacts is
invited to conceive, design, and analyze its own w-elements (namely these arti-
facts) with connotations that are the primitives of this theory of arti�cial percep-
tions: w-element, connotation, perception predicate, the categorical primitives
(morphism, domain, codomain, composition) and the Boolean primitives. This
relatively small number of primitives predicts the possibility of tidily structured
implementations with a reduced component set, where components are reusable
across a broad spectrum of cognitive activity.

A Appendix: Technicalities are a Necessary Evil

A rigorous mathematical theory warrants tidiness and neat formulations. The
price is, sometimes, a tedious proof of various technicalities. Once they are
taken care of, one could usually forget about them (one has, however, gained
insights into the structure). The material in this appendix would have interfered
with the 
ow of the presentation, so it was gathered here. No new premises or
concepts are introduced in this appendix.

A.1 Technicalities for Boolean Perceptions

For section 6, the following considerations are needed:

� Given a perception hB; �i every w 2 E naturally de�nes a three valued
mapping: �w : B ! ft; f; ug : � 7! �(w; �). For the current purpose it is
convenient to regard �w as a partial two-valued mapping, such that �w
is unde�ned for � if and only if �(w; �) = u. Whenever the perception
hB; �i is total, then, for all w 2 E , �w is a total two-valued mapping.

� ft; fg could be regarded as the two element Boolean algebra which consists
of a `top' t and a `bottom' f only. In that case, a total �w : B ! ft; fg
is either a two-valued Boolean homomorphism or it is not. (A predicate
de�ned on a Boolean algebra is traditionally expected to be such a two-
valued homomorphism.) Similarly, a partial �w : B ! ft; fg could either
be extended to a two-valued Boolean homomorphism, or it could not.

A few known Boolean algebraic results are needed as well. The �rst one (see,
for example, [55]) is due to a natural bijective correspondence between maximal
ideals, maximal �lters, and two-valued homomorphisms.
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A mapping h : B ! ft; fg is a two-valued homomorphism if and
only if the set 5 = f� 2 Bkh(�) = tg is a maximal �lter, and the
set 4 = f� 2 Bkh(�) = fg is then the dual maximal ideal.

Extensions to two valued homomorphisms, together with the implied partition
into a maximal ideal and its dual maximal �lter, are going to serve as an alter-
native touchstone for b-perceptions. Based on the de�nitions of �w above, and
of �, the natural morphism of example 8, it is easy to show that:

Lemma 16 Let C = hB; �i be a total perception where B is a Boolean alge-
bra. Then the natural p-morphism (of example 8) � : C ! UE : � 7! fw 2
Ek�(w; �) = tg is Boolean if and only if, for every w 2 E , �w : B ! ft; fg is a
two valued homomorphism.

Since a permit de�nes a total perception which answers the conditions of lemma
16, then, using it and the known Boolean results that were quoted before one
gets:

Corollary 6 The following three conditions are equivalent:

1. C = hB; �i is a b-perception

2. For every w 2 E the two-valued partial mapping �w could be extended to
a two valued homomorphism.

3. For every w 2 E , B can be divided into a maximal �lter 5w and a dual
maximal ideal 4w such that, for all � in B, �(w; �) = t ) � 2 5w and
�(w; �) = f ) � 2 4w. In that case a permit b� of C is de�ned, for all
w 2 E and for all � 2 B, in the following way: if � 2 5w then b�(w; �) = t

and if � 2 4w then b�(w; �) = f.

We shall designate by 4b�w the maximal ideal associated with w and the permitb�, and its dual maximal �lter by 5b�w.
In a certain sense, corollary 6 is the point where the present study meets

the classical theory that admits only total descriptions and two truth values.
Loosely: b-perceptions are neither total nor two valued, but they have the
potential of evolving into two valued perceptions.

The necessary and su�cient Boolean characterization of 6 provides us with
further tools to understand b-p-predicates. Consider C = hB; �i, and the set V
of all its permits. For all w 2 E consider the following intersections:

5w =
\b�2V5b�w ; 4w =

\b�2V4b�w
As an intersection of maximal �lters, 5w is a proper �lter. Similarly, 4w is
a proper ideal since it is an intersection of maximal ideals. Moreover, they are
dual one to the other. Furthermore, by the last item of corollary 6 and by the
second condition of de�nition 10, one gets:

Lemma 17 For all w in E:

5w = f� 2 Bk�(w; �) = tg and 4w = f� 2 Bk�(w; �) = fg
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de�nition 10 provided an external, categorical, de�nition of b-perceptions. Lemma
17 enables us to formulate a necessary and su�cient condition for the recogni-
tion of b-perceptions `from inside':

We now prove lemma 3:

A perception C = hB; �i such that the set B of connotations is a
Boolean algebra is a b-perception if and only if for all w 2 E :

1. The set f� 2 Bk�(w; �) = tg is a �lter.

2. The set f� 2 Bk�(w; �) = fg is an ideal.

3. The above �lter and ideal are dual one to the other: for all �
in B, �(w; �) = t if and only if �(w;:�) = f.

Proof. The condition is necessary by lemma 17. It is su�cient by the following
Boolean results which are part of Stone's fundamental representation theorem
of [56]:

For every proper ideal4 (proper �lter5) there exists a maximal
ideal (maximal �lter) containing 4 (containing 5).

For every proper ideal 4 (proper �lter 5) there exists a two-
valued homomorphism h such that h(�) = f for all � 2 4 (h(�) = t

for all � 2 5).

2

Algorithm 1 One may generate a permit for a given b-perception, using a
method that is based on the general Boolean algebraic construction of the maxi-
mal ideal (�lter) which is used for a proof of Stone's representation theorem (see,
for example, [55]). The essence of that construction is that, for every w 2 E, and
every ordering f�igi=1;n on the connotations, one builds an increasing sequence
f4igi=0;n of proper ideals, where 40 = 4w and 4n is a maximal ideal con-
taining 4w. Every ideal 4i represents a Boolean improvement �i of �, where,
for all � 2 4i, �i(w; �) = f and �i(w;:�) = t, otherwise �i(w; �) = u. �n is
thus a permit of C = hB; �i. Proof is by induction as for the cited construction.

We now prove lemma 4, that the Truth Tables for the b-p-predicate � are given
by tables 1, 2, 3. Proof Outline. lemma 3 provides proofs to all cases where
one is able to come up with a de�nite (t or f) value for �. To prove the remaining
cases, where the value of � should be u, one needs to go back to the original
de�nition 10. An example is the following proof that if �(w; �) = �(w; �) = u,
then �(w; � _ �) = u (unless :���, in which case it is t):

Since 4w is an ideal, it cannot be that �(w; �) = �(w; �) = u

and �(w; � _ �) = f. the value of �(w; � _ �) is thus either t or
u. We show that it is t if and only if :���. The `if' part holds
since, in that case, � _ � = > (see corollary 1). To show the `only
if' part, Let �(w; �) = �(w; �) = u, and assume negatively that
�(w; � _ �) = t. Since � is a b-p-predicate it follows that for all

permits b�(w; � _ �) = t. Recall the maximal ideal 4b�w and the

maximal �lter 5b�w of corollary 6. By their maximality, whenever �
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Figure 9: `Inverse Pyramid' Diagram

is an element of 4b�w, then � must be an element of 5b�w, and hence

:� must be an element of 4b�w. This necessarily implies (by 4b�w
being an ideal) that :���.

Argumentations of a similar nature can be used to prove that:

� Let �(w; �) = �(w; �) = u, then �(w; � ^ �) = u (unless ��:�, in which
case it is f).

� Let �(w; �) = f and �(w; �) = u, then �(w; � _ �) = u.

� Let �(w; �) = t and �(w; �) = u, then �(w; � ^ �) = u.

2

A.2 Technicalities for Free Generation of Boolean Percep-

tions

For section 7 we provide the proof of lemma 6 that free Boolean generation
preserves morphisms:

Let P = hI ; %i and Q = hJ ; � i, and let f : P ! Q be a p-
morphism. Let Gfr(P) = hBfr

I ; %
fri, and Gfr(Q) = hBfr

J ; �
fri. Let

h : Bfr
I ! Bfr

J be the unique extension of the mapping I ! Bfr
J : � 7!

f(�) into a Boolean homomorphism such that 8� 2 I h(�) = f(�).
Then the mapping Gfr(f) : Gfr(P)! Gfr(Q), de�ned by: � 7! h(�),
is a b-p-morphism such that the diagram of �gure 2 is commutative.

Proof. For the proof we shall consider the `inverse pyramid' diagram of �gure
9. The diagram of �gure 2 is its `top cover'. It is �rst observed, using no-
blur of f , that any total improvement b� of Q implies a total improvement b%
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of P: 8� 2 I b%(w; �) = b�(w; f(�)). These total improvements can be uniquely

extended, respectively, into a permit b�bl of Gfr(Q) and a permit b%bl of Gfr(P)
(lemma 5). Moreover, since these permits agree on the set of generators I, then

also, for all � in B, b%bl(w; �) = b�bl(w; h(�)). It follows that the permits of
Gfr(Q) de�ne a subset of the permits of Gfr(P). Assume now that %fr(w; �) 6= u.

By de�nition of %fr, for any permit b%bl of Gfr(P), b%bl(w; �) = %fr(w; �) 6= u. This
holds, in particular, for the permits that are de�ned, as above, by the permits
of Gfr(Q). It follows that for any permit b�bl, b�bl(w; h(�)) = %fr(w; �) 6= u, and
this holds for � fr as well: � fr(w; h(�)) = %fr(w; �) 6= u, so that Gfr(f) is no-blur
and hence a unique, b-p-morphism. It is hence easy to see that the `inverse
pyramid' diagram of �gure 9 is commutative. 2

A.3 Technicalities for Completion of Boolean Perceptions

The rest of this technical appendix is needed for section 8.1. De�nition 17 of
the completed perception is quite straightforward, but it has to be technically
justi�ed. We �rst establish that B is a not a degenerate Boolean algebra:

Lemma 18 4 is a proper ideal 4 6= B.

Proof. We are going to show that 4 = B implies that one of the elements of S
is generated by an `illegal' �-subsumption. First observe that:

� If 4 = B, then
W
s2S s = >.

� By de�nition of S and of � it follows that, for all s 2 S and for all w 2 E ,
�(w; s) 6= t.

it follows from the truth table for disjunction in b-perceptions (2) that there is
some Boolean dependence in the set S: There is a subset X � S, of at least two
elements, such that, although for all its subsets Y � X 8w 2 E �(w;

W
s2Y s) 6=

t,
W
s2X s = >. Let X = Y [ fs0g. If

W
s2Y s _ s0 = >, then, :

W
s2Y s�s0,

and :s0�
W
s2Y s. By validity of C the above Boolean subsumptions imply the

corresponding �-subsumptions, and thus 8w 2 E �(w; s0) = u. By de�nition of
S, s0 = � ^ :� for some ���, so, for all w 2 E , �(w�) = �(w; �) = u This is a
contradiction to de�nition 15. 2

Corollary 7 For all w 2 E, �(w;
W
s2S s) 6= t.

We verify now that �cmp could be a b-p-morphism onto C.

Proposition 8 Let C = hB; �i be a b-perception. Whenever � �= �, then it
cannot be that one of �(w; �), �(w; �) is t and the other one is f.

Proof. It follows by corollary 7 and validity of C that, for all w 2 E and for all
connotations � 2 4, �(w; �) 6= t. If, for some w 2 E , one of �(w; �); �(w; �) is
t and the other one is f, then either �(w; � ^ :�) = t, or �(w; � ^ :�) = t, so
that � 6�= �. 2
It remains to establish that C is a b-perception. It is �rst shown that a permit of
C, if it exists, is monotone, (as one should expect by proposition 7). Existence
is shown afterwards.

Proposition 9 Let � be a permit of C, then a �-subsumption, ���, implies a
� subsumption, [�]�[�].
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Proof. By construction of B a �-subsumption, ���, implies a Boolean sub-
sumption, [�]�[�]. A permit � de�nes a total b-p-predicate, and, by validity,
the Boolean subsumption implies the perceptual � subsumption [�]�[�]. 2
� , if it exists, induces a monotone permit, � 0 = �cmp � � of C. We are going
to show that all the monotone permits of C are so induced. As always in this
category of perceptions, the universal perception, UE , is the primary tool for
bootstrapping technicalities.

Proposition 10 Let b� be a monotone permit of C, then � �= � implies that �
and � are b�-synonyms.

Proof. As a monotone permit, b� de�nes a monotone b-p-morphism into the
universal perception which is complete (by example 24). It follows that conno-
tations in 4 are mapped to the bottom of UE (namely to the ; connotation),
and the proposition follows. 2
Let b� be a monotone permit of C. By the last proposition b� is also a permit of
C, and hence:

Corollary 8 If C has a monotone permit, then so does C.

We need to show that every b-perception has a monotone permit. A construc-
tion of a general permit for a b-perception was described in algorithm 1 of
appendixA.1. It can be easily modi�ed to produce monotone permits.

Algorithm 2 This is similar to algorithm 1, except that one starts from an
ideal 40 which is generated by both 4w and 4.

Lemma 19 All the ideals f4igi=0;n of algorithm 2 are proper and the corre-
sponding p-predicates �i are monotone Boolean improvements of �.

Proof Outline. First show that 40 is proper. 4w is proper because C is a
b-perception and 4 is proper by lemma 18. It remains to show that, for all
� 2 4, :� 62 4w. Let � 2 4, then � �= ?. By proposition 8, for all w 2 E ,
�(w; �) 6= t, and hence �(w;:�) 6= f. It follows that :� 62 4w. This completes
the proof that 40 is proper.

We show now that �0 is a monotone Boolean improvement of �: It is an
improvement since, by proposition 8, for all w 2 E , �(w; �) 6= t. It is Boolean
because 40 is proper. Lastly, to show that it is monotone, let ���, so that
� ^ :� 2 S � 4 � 40. It follows that �0(w; � ^ :�) = f, and in that case

�0(w; �)
Luk
�! �0(w; �). The general induction step is similar to algorithm 1. 2

Corollary 9 C has a (monotone) permit.

It remains to show the closure condition of de�nition 10 for C:

Proposition 11 Let �(w; [�]) = u. Then there exists some monotone permit,b�1, of C, where b�1(w [�]) = f, and another permit, b�2, where b�2(w [�]) = t.

Proof Outline. Assume negatively that, for all monotone permits b�, b�(w; �) =
f(t), and hence � 2 40 (:� 2 40). It can neither be that � 2 4w (:� 2 4w),
nor that � 2 4 (:� 2 4). We then use the closure property of C and the
de�nition of � to contradict the remaining possibility that, for some 
 2 4w
and some � 2 4, � = 
 _ � (:� = 
 _ �). 2
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Corollary 10 C is a b-perception, and the set of its permits consists of all the
monotone permits of C.

Finally we can prove lemma 10: (That a completed perception is a complete b-
perception.) Proof. [�]�[�] is a � subsumption if, and only if, for all monotone
permits b� of C, ���. This holds if and only if ��� is a �-subsumption. In that
case, by de�nition of B, [�]�[�]. 2

Corollary 11

[�]
B
� [�], [�]

�
� [�], [�]

�
� [�]
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